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Abstract. Mathematical models of spreading depression are considered in the form of reaction-
diffusion systems in two space dimensions. The systems are solved numerically. In the two com-
ponent model with potassium and calcium ion concentrations, we demonstrate, using updated pa-
rameter values, travelling solitary waves of increased potassium and decreased calcium. These have
circular wavefronts emanating from a region of application of potassium chloride. The collision of
two such waves does not, as in one space dimension, result in annihilation but the formation of a
unified wave with a large wavefront. For the first time we show that the mathematical model repro-
duces the actual properties of spreading depression waves in cortical structures. With attention to
geometry, timing and location of stimuli we have succeeded in finding reverberating waves matching
experiment. By simulating the technique of anodal block, spiral waves have also been demonstrated
which parallel those found experimentally. The six-component model, which contains additionally
sodium, chloride, glutamate and GABA, is also investigated in 2 space dimensions, including an
experimentally based exchange pump for sodium and potassium. Solutions are obtained without
(amplitude 29 mM external K) and with action potentials (amplitude 44 mM external)Kvith

speeds of propagation, allowing for tortuosity, of 1.4 mm/minute and 2.7 mm/minute, respectively.
When action potentials are included a somewhat higher pump strength is required to ensure the
return to resting state.
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INTRODUCTION

Spreading depression (SD) is a complex wave of transient depolarization of neurons and
glia that propagates across cortical and subcortical gray matter at speeds of 2-5 mm/min.
It arises mainly as a response to brain injury or pathology. By itself SD does not usually
damage brain tissue, but during stroke and head trauma SD can arise repeatedly near the
site of injury and may promote neuronal damage. One of the characteristics of SD is a
large increase in extracellular potassium and a dramatic fall in extracellular calcium and
other ions [1,2]. For reviews, see [3,4].

There has been much evidence for the idea that SD is a concomitant or cause of
migraine [5-7]. A strong link exists between glutamate and migraine [8] and glutamate
has been found to be important in the propagation of SD [9]. SD is associated with focal
ischemia, traumatic brain injury [10,11], seizure activity [12] and spinal cord injury
[13]. New effects and roles for SD have been discovered in the last several years. It
has been demonstrated in human neocortical slices [14], has been found to suppress
y-activity in rabbit cortex [15] and it has been elicited in the brainstem [16], thought
previously not to be capable of supporting SD. SD has also been recently shown to



release ATP into the extracellular compartment [17] and sustained elevated levels of
potassium ion concentration have been found to lead to significant amounts of neuronal
death [18]. Another finding, revealed by MRI, is that SD has components called primary
and secondary events, the former having greater range and greater speed [19].

SD involves neuronal, including synaptic, and glial elements and there are a very large
number of physiological and anatomical details which are relevant to its propagation, all
of which are difficult to include in a mathematical model. These details include those
of the dynamics of many neuronal and glial ion channels, pumps and other clearance
mechanisms, blood supply, gap junctions as well as diffusion in the extracellular space.
Just the aspects of presynaptic terminals and the dynamics of transmitter release are
extremely complex as there are hundreds of different channel types in these specialized
parts of the nervous system [20]. Glia and neurons are connected by gap junctions which
are ubiquitous in brain circuits [21]. Some gap-junction blockers have been found to
impede SD, resulting in reduced amplitude and duration [22]. The NMDA blocker MK-
801 was found to prevent SD in mouse neocortical slices but not an accompanying
astrocytic calcium wave, though its speed was reduced [23]. Further, the specific gap
junction blocker carbenoxolon did not prevent SD but also reduced the speed of the
calcium wave. It is noteworthy that increased potassium reduces the efficacy of NMDA
receptor antagonists to block SD [11].

There appears to be a reciprocal interaction between neurons and glia through neuro-
transmitter release, uptake and calcium fluxes [24, 25]. Astrocytes have been found to
play a role in the modulation of synaptic inhibition [26] and glia have been suggested
as playing an important role in SD [27]. However, the effects of gap junction blockers
may be more than just blocking gap junctions, which clouds the role of gap junctions in
SD. For example, some alcohols have been shown to affect both receptor-activated ion
channels and voltage-gated ion channels [28]. These effects include inhibition of sub-
types of NMDA-glutamate receptor ion channels and potentiation of certain subtypes
of GABA-A receptor ion channels. Altered properties of these and other ion channels
may contribute to the difficulty of eliciting SD in the presence of gap-junction blockers.
Furthermore, alcohols may change the probabilities of opening of sodium channels [29,
30].

Mathematical models of SD have usually taken the form of reaction-diffusion sys-
tems - that is systems of parabolic partial differential equations involving spatial diffu-
sion, with one or several equations for each neurochemical variable. Solutions of the
equations are obtained by numerical methods, although some useful information about
solution properties can be obtained analytically for the simpler models. Theoretical and
experimental aspects of reaction-diffusion systems in the brain have been comprehen-
sively reviewed by Nicholson [31].

Properties of reaction-diffusion systems in other areas such as the Belousov-
Zhabotinsky reaction [32] may extend to neural phenomena including SD. Computa-
tional models of SD have sometimes adopted the cellular automata approach which is a
useful first approximation [33,34]. Properties of SD, such as topographical constraints,
have also been usefully investigated with mathematical models of general excitable
systems, typified by the Fitzhugh-Nagumo equations [33, 35-37] and metabolic models
have been related to migraine aura [38]. Shapiro’s [39] model included a great amount
of physiological detail including gap-junctional mechanisms and volume changes.



Continuum neural models have mathematical properties of interest, such as travelling
wave solutions [40] and pattern formation [41]. Theoretical models of SD include those
which incorporate a single-cell approach [42,43], which is useful for delineating local
effects, and electrodiffusion models [44]. In this article we consider some properties of
reaction-diffusion models with 2 and 6 components in two space dimensions in order
to investigate their properties and to demonstrate for the first time the experimental
phenomena of spiral waves and reverberating waves for SD.

THE SIMPLIFIED TWO-COMPONENT MODEL IN TWO SPACE
DIMENSIONS

Diffusion through brain extracellular space proceeds quite readily even for larger
molecules [48,49] so there is doubtless a substantial contribution to the propagation of
SD by diffusion. This is supported by the fact that models which allow for diffusion and
tortuosity give the correct speed for SD. Significant changes in extracellular space occur
during SD [50,51] but these changes are neglected here because we concentrate mainly
on low-amplitude waves and moderate changes in exté¢nahave little such effect
[52,53]. In the simplified model in two space dimensions, with extracellular potassium
and calcium ion concentrations, denotedkfy(x, y,t) andCal(x,y,t), playing key roles,

the model equations are as follows, slightly modified from [46],

KO
‘?m = Dk 0%+ f(K°,Ca)
(o]
dgf = Dca0°Ca® +g(K°,Ca)

2 2 . . .. .
where[2 = aa_xf + é?_yz’ Dk andDc4 are diffusion coefficients anflandg are the reaction

terms to be described below. To reduce the number of differential equations with little
loss of accuracy the corresponding internal concentrations are given by

a

B

ca(x,y,t) =CadR— % [Ca®(x,y,t) — Ca’F]

Ki (X7 y7t> = Ki’R_ [KO(XJ yvt) - KOR}

where the superscrif® denotes resting level and whewg/ 3 anda /y are ratios of the
volume of extracellular space to those of the appropriate intracellular compartments.
For potassium, contributions tocome from flux into postsynaptic compartments and a
pump which acts to restore resting ionic concentrations. We may putsource— foump
where

fsource= k1 (Vk —V)(V —Vca)0ca(V)

and
fpump= k2[1— exp{ — ks(K°(x,y,t) — K®F)}].



. ?,mnfnnrnWW""""“ﬁwrmm“" 51
""1‘ e

. =500

=

25

0 o

FIGURE 1. Showing the extracellular potassium ion concentration at t=2.5 and t=5.0 for the two-
component model with standard parameters.

HereVk andVc, are the Nernst potentials for potassium and calcium
RT i
VK - ? In(KO/KI)
RT i
Vca= ==In(Ca°/Cd
ca= e In(Ce’/Cal)
andV is the equilibrium membrane potential
_RT KO+ pnaNa® + peCl!

Vv . .
F | K+ pnaNa + peiCI°

whereNd°, CI'° are the appropriate internal and external concentrations of sodium and
chloride ions angya, pc are the corresponding relative permeabilities.
oca(V) is the calcium conductance of presynaptic membrane, given by

gea(V) = [1+tankks(V +Vr)] —ke|H(V —Vc)

whereV is a cut off voltage and puttings = 1+ tanh(kz(Vc +V T)) ensures that the
conductance rises smoothly from zeFi(X — X,) is a unit step function at,. Similarly
we put
d = Ypump— Gsink
where
Osink = Ka(Mca—V)dca(V)
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FIGURE 2. Showing the extracellular calcium ion concentration (looking from below) at t=2.5 and
t=5.0 for the two-component model with standard parameters.

Opump= Ks [1— eXp{ — ke(CaO — CaO’R) }] .

The value ofRfT is chosen appropriately for 37 degrees Celsius. All concentrations are
in mM.

What we will call the standard parameter set consists of the followkng: 3.3,
ko = 208 k3 = 10, kg = 0.3, ks = 2.38, ks = 40, k7 = 0.11, K'R = 140, KOR = 3,
CdR=0.0001, Ca®R=1,Vr =45mV,V, = —-70mV, a/B = 0.53, a /y = 0.207. The
accepted value for the fraction of the brain which is extracellular space is 0.2 [49] so
the values oty /3 anda /y differ considerably from those used previously, being based
on [54]. Note that the actual intracellular volumes are not necessarily those available
for occupation by ions and molecules because of various intracellular organelles such as
mitochondria, filaments and other elements. The model was tested with large ranges for
these parameters. Since here sodium and chloride movements are ignored, in contrast
with the 6-component model, the quantities

y = pnaNa + peiCl!

d = pnaNa + peiCI°

are held fixed at 9 mM and 40 mM, respectively. The quarity/F is set at 60.09.
Numerical integration is performed one [0,2.5], y € [0, 2,5] with an explicit method

and the results were checked against those for an implicit method. For the numerical
integrationAx = Ay = 2.5/300andAt = .005 (Distances are scaled so that the diffusion
coefficients are 0.0025 and 0.00125 for potassium and calcium.) With the standard set of
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FIGURE 3. Showing the extracellular potassium ion concentration during a collision in the two com-
ponent model with standard parameter set. The times indicategd-ar200 400 600 & 900.

parameters, a stable solitary wave with amplitée, = 17.14 mM andCa&3,;,, = 0.04
mM formed from supra-threshold local elevations of external potassium

2 2
o _ LoR [ (x=125 y—125
K®(x,y,0) =K +20exp{ {(—0.05 ) + (—0'05 ,

with Ca°(x,y,0) = Ca®R. Throughout the paper, a unit of distance corresponds to about
5.2 mm and a unit of time is about 26 seconds [47]. The discrete time points are denoted
byt,k=0,1,...,T/At. Figures 1 and 2 show potassium and calcium waves for standard
parameters when action potentials are ignored.

Collision

In Figure 3 is shown the result for a collision between two SD waves, one starting
at (x,y) = (1.05,1.05) and the other atx,y) = (1.45,1.45). It can be seen that after
colliding the waves merge to form a wave of a large wavefront, unlike the case in 1
spatial dimension where colliding waves annihilate.



Reverberating SD waves

One very interesting aspect of waves of spreading depression was the demonstration
of reverberating waves; that is, waves which keep circling an obstacle for a very long
time. In the experiments [55] in rat cortex, spreading depresssion waves could circulate
for several cycles, with more cycles when lesions were made in some regions than
others. On occasion, up to 27 cycles were observed. The principal method of instigation
of reverberating SD was with the topographical set up of Figure 4. As depicted in A,

a lesion or obstacle Q of large enough dimension is made in the cortex. A suitable
stimulus, such as a local increase of potassium chloride concentration sufficient to elicit
a wave, is applied at S1. After a certain time interval, the wavefront has split into two
components W1 and W2 on either side of Q. At this point a second stimulus S2 is
applied so that its emitted waves move on one side into the refractory zone of W1 and
on the other side into the recovered zone in the wake of WL1. If the timing and location
of the second stimulus are appropriate, then as shown in B the first waves have passed
the obstacle as wavefront W3 and meanwhile the surviving part of the secondary wave
is at U1. In C, the first wave has reached the boundary as W4 where it will die and the
secondary wave has advanced to U2. Hereatfter, as in D, the secondary wave is able to
circulate unimpeded around the obstacle. In experimental reverberating SD, the wave
motion starts to slow after several cycles and eventually disappears due to exhaustion of
local metabolic resources after successive recoveries from SD. This latter aspect is not
addressed with the present model but it could possibly be incorporated in a model such
as that of [56, 57] where metabolic variables were included in a model of stroke which
embraced SD.

The computational details for a reverberating wave are as follows. The model equa-
tions were as in the beginning of Section 2 with what we have called the standard pa-
rameter set. The rectangte= [0,0.8] andy € [0,0.9] is used with an obstacle centered
atx= 0.4, y = 0.45with radius0.2. The increments idx, Ay andAt are 0.8/60, 0.9/70
and 0.01, respectively. At= 0 increased potassium (chloride) was applied as

KO(x,y,0) = K®R420exp] — (((x—0.4)/0.05)? + ((y — 0.725)/(0.05))?)],

with C&°(x,y,0) = Ca®R.

The resulting wave pattern was observed and it was noted when one branch of the
primary wave was at W1 as indicated in Figure 4A. There was not much freedom in the
timing and location of the second stimulus S2. Several placements led to a non-clean
secondary wave which left behind a small patch of increased potassium that developed
into a complex wave pattern. Thus after several attempts the following second stimulus
was found to lead to a clean SD wave emanating from S2 in the back direction

KO(x,y, 281At) = K°(x,y, 28QAt)

+10exp| — (((x—0.7)/0.06)% + ((y— 0.44) /(0.06))?)],

andCa°(x,y, 281At) = Ca’(x,y,28QAt). The results are shown in plan view in Figures
5 and 6 and parallel those in experimentally produced reverberating waves in retinal
SD. At the 20-th time pointtf = 20), the initial Gaussian distribution has spread a
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FIGURE 4. The topographical setup for obtaining reverberating waves of spreading depression. In A
is shown a brain region containing a lesion or obstacle Q which blocks the passage of SD. S1 is the first
stimulus which gives rise to waves W1 and W2 which pass around the obstacle. At a suitable time and
location, a second stimulus S2 is applied in the back of the first wave W1. As shown in B, this wave can
only move to the right which it does into a non-refractory zone. Meanwhile the first waves advance firstly
to W3 and then as seen in C to the boundary of the region where they die, leaving the sole SD wave to
circulate unimpeded as in D.

small amount and, bl = 150, two SD wavefronts are observed travelling in opposite
directions away from the source. t= 280the wavefronts are at about the narrowest
part of the region between obstacle and boundary and this is when the second stimulus
is applied aty = 281 - see the bottom right part of Figure 5. ft= 500 (see Figure

6), the initial two wave branches waves are merged and about to pass into the left-hand
boundary ay = O where they are absorbed whereas the secondary wave is seen travelling
at top right on its first circuit of the obstacle. At= 700the sole secondary wave can

be seen travelling down past the right side of the obstacle and it continues indefinitely,
in the absence of metabolic constraints, in a clockwise motion about the obstacle.

Spiral SD waves

Spiral waves are frequently found in reaction-diffusion systems involving excitable
and recovering elements [41, 35, 58] and there have been many theoretical attempts to
understand them [59-61]. Experimentally they have been observed for SD in chicken
retina [62, 63]. However they have never been obtaindabima fidemodels of spread-
ing depression so we decided to investigate their possible occurrence in the improved
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FIGURE 5. Showing the first phases of the development of a reverberating SD wave as seen in
experiments on rat cortex. For parameter values, see text.
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FIGURE 6. Showing the established reverberating SD wave.
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FIGURE 7. Showing the set up for development of a spiral wave of SD. For full explanation, see text.

two-component model outlined above. Time did not allow their investigation in more
complex models. In one set of spreading depression experiments carried out on chicken
retina, the method of anodal block was used to extinguish a part of an SD wavefront [62].
The end of remaining part of the wave curled around behind the almost plane-wave front
to give a spiral. This could be done by dissolving one end of a wave or a middle segment.
In the latter case two spirals lurched towards each other.

To study this phenomenon it is necessary to effect the mathematical equivalent of an
anodal block. There are doubtless several ways to do this, but the following was adopted.
A wave is started at point P in Figure 7 in the lower left quadrant. A block of all entry
of an SD wave into the lower right (shaded) quadrant is effected by holding the ionic
concentrations at their resting levels until the time when the wavefront from the source
at P is just at the upper edge RS of the lower left quadrant. At this instant the clamp on
the lower right quadrant is removed, leaving a wavefront along RS with a completely
unrefractory region to its right and a refractory region immediately behind it. At the
time of the removal of the clamp, the set up is equivalent to having extinguished the
right branch of a travelling wavefront.

The results of the computations are shown in Figure 8. The region considered is
x € [0,2], y € [0,2] with 151 space points in bothandy directions. The time step is
0.01. The lower right quadrant was held at the resting level gnt 400 and a wave
started with the initial distribution

KO(x,y,0) = K®R+20exp[ — (((x—0.3)/0.05)2+ ((y— 0.5)/(0.05))?)]

concentrated in the center of the lower part of the bottom left quadrant. The wave front
becomes almost a plane wave frontat 450 (t = 4.5) occupying approximately the



FIGURE 8. Showing the development of a spiral wave as seen in experiments on retinal spreading
depression. The graphics has distorted the wavefronts which are actually circular. For remaining parameter
values, see text.

upper boundary of the lower left quadrant as seen in the Figurg.-At600 the right

hand end of the wave has begun to curl around behind the plane wave and this spiralling
continues for several turns until the simulation is terminateg-at900. Note that these
spirals are actually circular but the graphic limitations have made them appear rather
squarish. The spiralling is exactly analogous to that found in experiments with the anodal
block technique.

THE 6-COMPONENT MODEL WITH K™, Ca"*, Na",Cl~ AND
EXCITATORY AND INHIBITORY TRANSMITTERS

The above two-component model is useful for studying certain phenomena associated
with spreading depression. However, a more extensive model [47] considers the 4 ions
K*,Ca"", Na", Cl~ and an excitatory transmitter, denotedTy which is expected to

be mainly glutamate, and an inhibitory transmitter, denoteg ayostly GABA. Letting

the vector of external ion and transmitter concentrations (ey,t) with uy, ...,us, as

those ofK ™, Ca**, Nat, Cl—, Tg andT,, respectively, then quite generally

Jdu ”

— =0 F

ot u-+F(u)
with an initital condition

u(x,y,0) = ug(x,y),



and suitable conditions at the boundary of the region under consideration. SD is actu-
ally a phenomenon in 3 space dimensions, but we consider only two for economy of
computation.

We consider two intracellular compartments, one pertaining to synapses and the other
to nonsynaptic processes which may include contributions from glia. These are assigned
possibly different ratios of extracellular to intracellular volumes, denoteghignda,
respectively. The internal ion concentrations, denoted!Byi = 1,2, 3,4, are assumed
to be given by the local conservation equations, which for potassium, sodium and
chloride are, witrR denoting a resting equilibrium value,

int,R

u%nt(X,%t) = Ui + al[uiR_ Ui (X>y7t)]7i = l’ 3’4’

for potassium, sodium and chloride whereas for calcium

i int,R
Ug]t(X,y,t) = Ug] T 02[u§_ UZ(X7y7t)]'

Itis more transparent to us€®, Ca®', Na®/, CI1%/, T2 andT,*' for the ion and trans-
mitter concentrations and it is expeditious to omit the space-time coordifates).

The membrane potential is assumed given by the Goldman formula

_RT KO+ pnaNa® + peiCl!

V . .
M= F 7 KT+ pnaNa + peClo

and the Nernst potentials are as given in Section KfandCaand by similar formulas
for NaandClI. The very complex dynamics of calcium at presynaptic terminals have
been the subject of many experimental and theoretical studies mainly with a view to
guantitatively understanding transmitter release [64-66]. Other works have concentrated
on calcium dynamics in neurons during action potentials [67]. We include a major
component of calcium fluxes, that associated with the activation of synapses because
of its relevance to transmitter release. Although flows through other membranes are
doubtless significant they are for the most part neglected in the present model. Their
inclusion is no more difficult and their quantitative aspects just as uncertain but to
maintain a degree of simplicity they are omitted.

The source and sink terms are slightly modified from those given in [46]. For potas-
sium,

e kaT,°
TEO +ko T|O +Kkq

whereR nais the pump term andk  is a passive flux term given by

f.p = ke(Vm —Vm.R) (VM —Vik) H(Vm =V R)

where Vi r is resting membrane potential. The constigtensures thafx = 0 at

resting levels and it is assumed that the transmitter induced conductance changes are
zero unles32, T,° are positive. Although ion pumps have a complicated dependence on
concentrations of several ion species [68,69], we have adopted a model with an explicit

fk =ki(Vm —VWk)

— P Na+ Tk p+ ks,



and relatively simple form for the sodium-potassium exchange pump [70],

kig\ > kio\ 2
Pc,Na = K17 1+@ 1+@ ,

where it is assumed thatd > 0 andK® > 0.
For calcium,

fca=k7(Mm —Vca)dca+ Pea—Ks
where the calcium conductance is

Oca = (1+tanhksy(Viu +Vin)] — ka2)H (Vi = Vi),
Vy, being a cut-off potential with
ka2 = 1+ tanhka1 (Vi + V)]

to ensuregc, rises smoothly up from zero a4, increases througld,\]. The calcium
pump is simply . .
_ kpoCaH(Cd)
Ca” T Cdtky
The sodium and chloride terms contain transmitter-induced conductance changes and
pumps

T? kioT°
fna = ko(Vm —V; E_ | ! ] —k —k
Na= Ko(Vm —WNa) {Té”rkz Tt ke 22Pk Na— K11
kisTe T
for = ki2(Vm — Vi) [ng-iz + T°4|—k4] +Pei — kg
E |
where . .
B — kosCI'H(CI')
€= Cli + Kog

Glutamate NMDA receptors have been strongly implicated in SD as known blockers
of them prevent SD [71,72]. Rates of transmitter release are assumed proportional to
calcium flux so

fre = kis(Vm —Vea)9ca— P
fr, = kis(Mm —Vca)Oca— R,

where o o
PE — k27TE H (TE )
TP + kog
g = keaPH(T®).
T+ kao

Glutamate may also be released from glia during SD [73,74], but this contribution is not
explicitly taken into account here. The pump terms for glutamate and GABA represents
the clearance of these transmitters, for example into glial cells [75].



Results with the standard parameter set

The above system of six reaction-diffusion equations was integrated using an explicit
method. In particular, the first results are obtained with the following set of constants -
called the standard set.



Ratios of extracellular to intracellular volumes
a; =0.25 a, =2.0.

Diffusion coefficients in units of 18 cn? sec!
Dk = 2.5,Dca = 1.0,Dna= 1.7,D¢| = 2.5,D, = D1 = 1.3.

Resting concentrations in mM
KOR =3 KI'R=140Ca®R=1,Cd'R=0.0001LNa®R = 120
Na R =15CI®R = 13625, CliR—6,

Permeabilities
Pna = 0.05, pc) = 0.4

Calcium conductance parameters in mV
Vi) = 45V, = —60.

Dynamical constants
ki = 78091k, = 1.5 k3 = 0,k4 = 1.5,ks = 0,kg = 0.00015
k7 = 0.2,kg = 0.0003998kg = 1.6, k19 = 0,k1; = 39.814Q k12 = —104.05
kiz = 0,ki14 = 104064 ki5 = —3.47, kg = —3.15 ky7 = 577.895 kjg = 2.5
klg = 2.5, k20 = 0.87 k21 = 0.2, k22 = 0.3677, k23 = 0.11, k24 =0.0711
kos = 26016, kpg = 9.0, ko7 = 47.124 kog = 1.0, kog = 47.124 k3o = 1.00.

Figures 9 and 10 show some results for the standard set of parameters. In Figure 9 can
be seen the waves of increasing or decreasing ion and transmitter concentrations spread-
ing out from a local source in which both potassium and chloride ion concentrations
are increased. The amplitudes of the components in mM at their maxima or minima are
as follows:K® = 29.15,Ca° = 0.076,Na° = 107.9,CI° = 8168, T = 8.38,T) = 7.11
The details of the profiles of the waves in space are shown in Figure 10. The transmitter
concentrations are not known accurately and should only be considered as within multi-
plicative constants. However, the ion concentrations are all feasible in comparison with
experiment, both in magnitudes and time courses. More detailed investigations will be
reported later.

Action potentials

Action potential contributions to potassium flux were included by a time coarse-
graining technique in [46], and the procedure is vindicated by the results of the single
cell model [42]. However an alternative and similar procedure is as follows. Kainic
acid application in hippocampus showed that rapid neuronal firing occurred roughly at
depolarizations between 15 and 41.7 mV [76] which suggests the following approximate
but realistic term for the contribution to potassium sources from action potentials,

fK7Ap = C[H (V — Vl) —H (V— Vz)] (V — Vl)(V — Vg) (VNa—VK)(V —VCa)gCa(V)
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FIGURE 9. The response when potassium chloride is added at the center of the square for the 6-
component model with the standard parameter set. Shown spreading from the center are solitary waves
of increased extracellular potassium and transmitters and decreased calcium, sodium and chloride. The
times shown arg = 0, ty = 300andt, = 600 (At = 0.01).
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FIGURE 10. Showing the profiles of the external ion and transmitter concentratidps-a600 corre-
sponding to the waves shown in the previous figure.
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FIGURE 11. The external potassium ion concentratioriat 350 as a function of distance in the 6-
component model both with and without the inclusion of action potentials. These results are for two-space
dimensions of which only one is shown here. With action potentials results for two values of the sodium-
potassium exchange pump strength are shown - the same as without action potentials and a 10% stronger
pump which results in large amplitude faster solitary waves. The initial distribution in all cases was a
Gaussian suprathreshold application of KCI at the center of the space interval.

wherec is a constant andy, is the sodium Nernst potential. The membrane potentials
between which action potentials are emittedarandv,, with v < vo. We now have

Te
T2 +ko

keT
1%+ ka

fk = ki(Vm — k) + — P Na+ fK,p“f— Ks -+ fK,AP-

In the calculations we se&f = —55mV andvo, = —20mV.

The distribution of potassium ion concentration with the inclusion of action potentials
iIs shown in Figure 11. Three distributions are showrat 350 (At = 0.01). The
smaller wave is the solution with the standard parameter set and no action potential
contribution. The red curve shows the effect of including the action potential term with
¢ = 0.0015and no change in the strength of the sodium-potassium exchange pump.
It can be seen that the ion concentrations do not return to rest, although they may do
so eventually. Increasing the pump strength parameter by 10% sky$hat6356845
gave a properly formed homoclinic orbit with a return of ion concentrations to resting
levels. In this particular calculation the external sodium ion concentration did not fall
very much because the exchange pump returns sodium to the extracellular compartment
more rapidly. No attempt was made to increase the inward sodium or calcium fluxes due
to action potentials, this aspect being left for later work.



DISCUSSION

There has been much interest in both experimental and theoretical aspects of SD in
recent years, mainly because it has become increasingly apparent that SD plays a
significant role in many pathologies of the nervous system. The most prominent example
and that which has attracted the most attention is migraine headache. However, there has
been much interest also in SD as a concomitant of stroke and of seizures. Furthermore,
the implication that SD occurs in spinal cord injury is remarkable. It has also been
hypothesized that waves similar to SD might accompany orgasm [77].

The phenomenon of SD has been investigated for over 60 years and comprehensive
modeling (as opposed to ad hocapproach where elements are either excited or
not and may excite their neighbours) of the kind discussed in the present article was
commenced 30 years ago. Since that time there have been a few attempts to address the
physiological and anatomical substrates of SD. Itis clear that the number of neural, glial,
synaptic, metabolic and neurochemical variables which are involved in some way with
the formation and passage of an SD wave is very large. A knowledge of all the relevant
factors is hard to acquire, not only because of the size of the task, but also because of
the uncertainties in the numerical values which one should ascribe to many parameter
values. As an example, the ratio, let us catt jtof extracellular to intracellular volumes
is an important variable. The usually quoted value for this parameter is 0.2. However,
what does this mean? When we consider the space surrounding a synaptic terminal and
the space within a synaptic terminal it is not at all clear wina¢ because the portion of
the synaptic terminal that is available for the free motion of ions is known to be much
less than its actual physical volume. Calcium is not able to diffuse freely for more than
a very short distance in terminals [78] due to buffering. If the volume of a terminal is
about 0.512 [79] and one takes the rough density of synapses to be 1 per square micron
of cortical area [80], then the value of becomes much larger than 0.2. Despite the
limitations on the accurate knowledge of many parameters and the neglect of certain
variables, the present computations have been successful in predicting or agreeing with
many of the observed properties of SD waves.
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