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ABSTRACT A mathematical model is derived from physiological considerations for
slow potential waves (called spreading depression) in cortical neuronal structures.
The variables taken into account are the intra- and extracellular concentrations of
Na+, Cl-, K+, and Ca++, together with excitatory and inhibitory transmitter sub-
stances. The general model includes conductance changes for these various ions,
which may occur at nonsynaptic and synaptic membrane together with active trans-
port mechanisms (pumps). A detailed consideration of only the conductance changes
due to transmitter release leads to a system of nonlinear diffusion equations coupled
with a system of ordinary differential equations. We obtain numerical solutions of a
set of simplified model equations involving only K+ and Ca"+ concentrations. The
solutions agree qualitatively with experimentally obtained time-courses of these two
ionic concentrations during spreading depression. The numerical solutions exhibit
the observed phenomena of solitary waves and annihilation of colliding waves.

INTRODUCTION

Spreading depression (SD) was discovered by Leao (1944) in the course of his experi-
mental studies of epilepsy. SD is a slowly traveling wave phenomenon, since elicited in
a variety of brain structures in a variety of animals. Its speed is amazingly independent
of the structure, usual values being between 2 and 6 mm/min. Observations indicate
that an SD wave propagates only through regions of gray matter composed chiefly of
cell bodies, dendritic processes, unmyelinated axons, and glial cells.
The first observation of SD was through one of its concomitant effects, namely

depression of the normal electroencephalographic pattern of activity. If the DC sur-
face potential of the brain structure relative to some reference electrode (e.g., on tem-
poral muscle) is measured during SD, the most noticeable feature is a sustained nega-
tive wave with amplitude between 5 and 15 mV lasting from 1 to 2 min. (If the geom-
etry of the neurons is reversed, as in the olfactory bulb, then the wave is positive.)
Some SD waves are preceded by, and sometimes followed by, a surface positive wave
usually of smaller amplitude than the main negative component. SD waves are also
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observable below the surface, where the amplitude depends on the depth of the record-
ing electrode in the cortical structure. In rat cerebral cortex a fascinating set of experi-
ments by Shibata and Bureg (1972, 1974, 1975) has demonstrated the persistence of SD
waves by reverberation around closed loop pathways. An extremely comprehensive
review of SD, its concomitant biochemical effects, experimental methods for its elicita-
tion, and early theoretical considerations has been compiled by Bureg et al. (1974).

During the passage of SD through a neuronal structure, the individual neurons and
glia show characteristic behavior. Neurons invariably cease their spiking activity for
most of the duration of the wave. Usually they increase their rate of spiking at the
onset of the wave and also during the recovery period. Sometimes the initial bursting
is followed by a short silence, then a short burst, and then the characteristic longer
silence. The membrane potentials of individual neurons and glia have been measured
during SD (Higashida et al., 1974; Sugaya et al., 1975) and typically show a sustained
depolarization whose rising phase is more abrupt than its return to its usual value. The
time-course of the depolarization of single cells corresponds roughly with that of the
surface wave.
More recently, external ion concentrations have been measured during SD. Kraig

and Nicholson (1976) reported a large increase in the concentration of K+ and large
decreases in the concentrations of Na+ and Cl-. Nicholson et al. (1977) measured the
time-courses of the external concentrations of K+ and Ca++ during SD. The K+ con-
centration increased and declined in approximate correspondence with the neuronal
and glial depolarizations, whereas Ca++ showed the opposite behavior. These two ions
play a central role in the model to be presented here.

It is interesting that SD waves, which occur in populations of neurons, have many
wave properties (Bureg et al., 1974) in common with those action potentials that occur
in the axons of single neurons. Amongst these we find that both: (a) are approximately
all-or-none phenomena; (b) travel with approximately constant speed and wave form;
(c) involve depolarization of neuronal membrane; (d) exhibit refractoriness and rela-
tive refractoriness; (e) have multiple waves generated from a strong sustained stimulus;
(f) show annilhilation of colliding waves.
Although SD and action potentials both depend on ionic fluxes through neuronal

membrane, important qualitative and quantitative differences must be accounted for
in the development of a mathematical model for SD: (a) space and time scales are
longer for SD than for action potentials; (b) SD propagation seems to depend mainly
on ionic fluxes through synaptic membrane with some contributions from nonsynaptic
membrane (see below for supporting evidence), whereas action potentials propagate by
means of fluxes through nonsynaptic membrane; (c) SD waves propagate with sub-
stantial changes in extracellular ion concentrations (Kraig and Nicholson, 1976),
whereas during passage of an action potential the ion concentrations change by
negligible amounts; (d) active transport mechanisms are probably essential for the
recovery phase of SD but are not significant in the repolarization phase of action po-
tentials.
SD can be instigated by a variety of means. The stimuli that may be used include:
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(a) chemical, e.g., application of KCI, glutamate, and more recently ACTH (Jako-
bartl and Huston, 1977); (b) mechanical, e.g., by impact or wounding; (c) electrical;
(d) physiological, i.e., intense neuronal stimulation; and (e) ultrasound (Ueda et al.,
1977). The propagating SD wave shows an amazing independence of its method of
instigation.

Perhaps the most curious thing about SD is the question of its functional signifi-
cance. Many physiologists consider it a pathological phenomenon and a nuisance
when it arises accidentally in the course of an experiment. Physiological psychologists
have been interested in its effects on learning and behavior as SD forms a transient
reversible functional ablation of the tissue through which it passes. Recently it has
been suggested that SD might play a role in normal behavior (Jakobartl and Huston,
1977). It has been implicated in concussion (Bures, 1959) and migraine accompanied
by scotoma (Lashley, quoted in Bureg, 1959). SD has often been studied in the retina,
where its effects may be observed visually (Gouras, 1958).
Our objective in this paper is to derive a model for SD based on available physio-

logical information. The experimental results used to generate the model come from
many studies on diverse structures and we will have to extrapolate information from
these studies to develop the mathematical model. The parameters of the model have
definite physiological definitions, but due to lack of detailed information on any par-
ticular structure, we will in this first study assume values for these parameters that give
rise to solutions with the correct qualitative behavior.

MECHANISMS INVOLVED IN SD

A mathematical model for the conduction of impulses in cardiac muscle due to Wiener
and Rosenblueth (1946) was quoted as being relevant to SD (Shibata and Bureg, 1972),
but we feel it is not appropriate in this context. A computer simulation approach was
pursued by Reshodko and Bures (1975), but the physiological mechanisms were not
incorporated in the model nor quantified to any extent.

Since K+ is an important ion in determining neuronal and glial membrane potentials
and because its extracellular concentration has been shown to follow approximately
the time-course of depolarization of neurons and glia during SD, it is not surprising
that this ion is a necessary component of the model to be developed. Potassium was
the ion whose behavior was modeled in a previous theoretical investigation (Grafstein,
1963). If u(x, t) is the concentration of K+ in the extracellular space at time t, then, as
suggested by Hodgkin (unpublished communicated to Grafstein [1963]), the govern-
ing equation was postulated to be

,= Du~x + f(u), (1)

where f is a cubic of the form u(u - u1)(u2 - u) with ul and u2 both positive con-
stants, D is the diffusion coefficient, and x is distance measured in the direction of
propagation of the SD wave. The only stable, steady-progressing wave solutions of
this equation are saturating ones (Fife, 1977) and so the only part of the SD cycle taken
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into account was the elevation of external K+. Expressions for such solutions were
found by Huxley (see Graftstein, 1963). One may obtain an ad hoc complete with re-
polarization if one adds a "recovery" term in Eq. 1 to give

ut = DuXX + f(U) - u(x,t')di', > 0, (2)

the FitzHugh-Nagumo equation (FitzHugh, 1961; Nagumo et al., 1962), sometimes
used to mimic the behavior of the Hodgkin-Huxley system of equations (Hodgkin and
Huxley, 1952).

Grafstein argued that potassium released by neuronal spiking was the instigator of
SD (which is undoubtedly true in some cases) and that the spiking in neighboring
neurons induced by diffusion of K+ enabled the wave to spread. From recent experi-
ments, however, it is known that SD can propagate through cortical structures treated
with tetrodotoxin (TTX) (Sugaya et al., 1975). This chemical blocks the fast sodium
conductance changes necessary for action potentials, so neuronal spiking cannot play
an essential role in SD.
The fact that SD propagated in TTX-treated cortex without any spiking implies that

synaptic mechanisms not triggered by action potentials are important in SD. For
example, increased extracellular K+ around a rat neuromuscular junction produces
separate rapid ( -minutes) and slow ( --half an hour) effects on the transmitter release
system (Gage and Quastel, 1965). In further support of this idea is the blocking of SD
by Mg++ (Shibata and Bureg, 1975), known to block synaptic transmission in many
preparations by antagonizing the inward Ca++ currents needed for transmitter release
(Katz, 1969; Krnjevic, 1974). It is known that TTX does not interfere with postsyn-
aptic conductance changes induced by the suspected neurotransmitter L-glutamate
(Zieglgainsberger and Puil, 1972), nor does it interfere with nonsynaptic K+ conduc-
tance. Thus synaptic conductance changes will still be operative in TTX-treated cortex
along with certain TTX-insensitive conductance changes on nonsynaptic membrane.
Large concentrations of CaCl2 (119 mM/liter threshold [Shibata and Bureg, 1975])
also block SD. A possible explanation is that this is a "chloride block" (Leao, 1972).
The rapid effect of increased extracellular K+ on the transmitter release system men-
tioned above has been shown to be blocked by a high Ca++ concentration (Cooke and
Quastel, 1973). Another possibility is that additional Ca++ substitutes for Ca++ on
postsynaptic receptors (Krnjevic, 1974, in the case of L-glutamate; Neumann and
Chang, 1976, in the case of acetylcholine) so that released transmitter, which operates
by removing Ca++ bound to receptors, is rendered ineffective. Other explanations for
the block of SD by divalent cations are clearly possible, and for quantitative relations
and further discussion see Bures et al. (1974).
Another finding implicating synaptic mechanisms in SD propagation is that apical

dendrites seem to play an important role (Ochs, 1962). These processes have a high
density of (usually excitatory) synapses. Thus, instead of K+ released by neuronal
spiking, it seems that K+ released from postsynaptic cells due to depolarization of
synapses plays an important role in the spread of the SD wave.
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There is a controversy as to the primary chemical involved in SD propagation. Van
Harreveld (1959) postulated that the putative neurotransmitter glutamate might be
the primary agent in SD propagation in the rabbit cortex. This idea was further dis-
cussed with reference to SD in chicken retina (Van Harreveld and Fifkovai, 1970;
Fifkovai and Van Harreveld, 1974). The view that glutamate rather than potassium
ions plays a central role has not been generally accepted (Do Carmo and Leao, 1972;
Bures et al., 1974). In reality many chemicals are involved in SD and it is difficult to
single out one as central. In the model set forth here K+ will be the primary agent, in
the sense that its diffusion to neighboring cells will be the trigger for the chain of events
that lead to the release of more K+ and other ions. There will occur with the wave of
K+ an almost simultaneous wave of transmitter substances, so that in some sense our
theory unifies the two previous physical theories, if glutamate is the relevant trans-
mitter substance. Mathematical models may be used to resolve this controversy. It
should be pointed out, however, that Grafstein (1956) applied electric fields to isolated
cat cortical slab and found that the velocity of SD propagation was increased (de-
creased) when the field was applied so that positive ions would be accelerated (de-
celerated) in the direction of propagation. She therefore hypothesized that "the spread
of response is determined by the movement of K+."
Another consideration in modeling SD is the possible role of glial cells. There are

believed to be as many as 10 glial cells to every neuron in vertebrate nervous systems
(Kuffler, 1967), though they are much smaller than most neurons and probably occupy
only about half the volume of the brain. These cells are distinct from neurons in many
ways. They do not have action potentials, they may divide, and one of their functions
is to dispose of damaged neurons. They are thought to be mediators of nutrient supply
to neurons, as they have direct contact with blood capillaries. Physiologically glia act
chiefly as K-electrodes (Kuffler, 1967; Ransom and Goldring, 1973). They also have
uptake and release mechanisms for various amino acids (Minchin and Iversen, 1974;
Roberts and Keen, 1974) and ions (Gill et al., 1974; Latzkovits et al., 1974). It has
been found, however, that diffusion of chemicals is preferentially around glial cells
through the intercellular clefts. It was reported that their intracellular concentration of
K+ does not change significantly when the extracellular concentration of this ion is in-
creased (Nicholls and Kuffler, 1964). MUller cells in frog retina during SD undergo an
increase in internal K+ concentration (Mori et al., 1976), indicating that the observed
increase in external K+ is due to release from neurons rather than glia. The idea has
been advanced that glia play an important role in SD (Higashida et al., 1974), but we
will not treat glial cells in the main part of the model because it seems they are fairly
passive in SD. Since the model will predict the time-course of external K+, the glial
membrane potential can be easily obtained via the Nernst formula.

DERIVATION OF THE MODEL EQUATIONS

The anatomical system we consider is typical gray matter with its high density of cell
bodies and dendrites with their synaptic coverings. We will, to simplify and to enable
us to study the basic phenomenon of interest, treat only one spatial dimension and as-
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sume that the structure is spatially homogeneous. The treatment in two or three space
dimensions is complicated by the need to consider anisotropic diffusion of ions and
the geometrical nonhomogeneities. Because the diameters of most of the nerve cell
processes and synaptic boutons are on the order of a few microns (though apical den-
drites may extend for hundreds of microns) and the relevant length scale for SD is
millimeters, we will treat the various chemicals in the model as varying continuously
in space as well as time. We will speak of extracellular and intracellular concentrations
at the same point, though in reality these quantities will be defined over discrete inter-
vals. In other words, on the length scale appropriate for a study of SD, we can neglect
the discontinuities at neuronal boundaries. If we cite an intracellular concentration,
say, at point x, then this will mean, in terms of the actual neuronal structure, the con-
centration at the nearest set of intracellular points. It is emphasized, however, that
mechanisms at the individual cell level are taken into account.
The rate of change of the neuronal membrane potential, apart from the transient

spiking initially and during the repolarization phase, is so slow in SD that the capaci-
tive current essential to action potential generation is negligible. If action potentials
are taken into account during SD, then additional sources and sinks for the various
ions would have to be included. The relevant time scale for SD is seconds, long com-
pared to the usual time scale (milliseconds) for action potentials.

Fig. I shows an idealized picture of the subsystem whose physiological components
we shall focus on in developing a model for SD. A presynaptic terminal is shown with
membrane potential V2. The terminal contains neurotransmitter (possibly in vesicular
form) that may be excitatory or inhibitory with respect to the postsynaptic membrane.
The extracellular space is indicated and normally contains the ions Na+, Cl-, and

/\ , \
, .. , \

-- - - EXTRACELLULAR SPACE -

POSTSYNAPTIC NEURON

K+ A- -- Receptors
x x

VI x X Pump

"\ g) Pump
PRESYNAPTIC l

TERMINAL

FIGURE I Schematic representation of the anatomical and physiological details of the micro-
system on which the model for SD is based. Potassium ions are shown diffusing in from the left,
ahead of the SD wave front. The post- and presynaptic membrane potentials are denoted V1 and
V2. Ions are shown where their normal concentrations are higher; T denotes transmitter
substance. The associated arrows represent directions of flow during the rising phase of the SD
wave. Pumps are shown in both pre- and postsynaptic membrane. Receptors are denoted by
crosses and the dashed lines represent either neighboring neuronal processes or glial cells.
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Ca++ in high concentrations relative to their intracellular concentrations. The intra-
cellular compartments usually have a high concentration of K+ relative to the extra-
cellular concentration of this ion. A part of a postsynaptic cell is shown with mem-
brane potential Vj. The receptors on the subsynaptic membrane are the sites at which
conductance changes for the various ions occur when transmitter substance is released
from the presynaptic terminal. The rate of transmitter release is believed to be related
to the calcium current into the terminal, though aspects of transmitter release are still
under experimental investigation. There will also be a calcium flux into the post-
synaptic cell but this is not explicitly taken into account here. Hence calcium currents
are only taken into account insofar as they effect transmitter release. Active transport
mechanisms (pumps) are shown located in both pre- and postsynaptic membranes,
their main function being to restore the normal distributions of the ions. Pumps are
also often invoked as mechanisms for the uptake of certain amounts of transmitter sub-
stances into the presynaptic terminals, but these pumps will not be included in our
model.
The concentrations of the various ions at the spatial point x and at time t will be

denoted by C, (x, t) in the extracellular space and by CJ(x, t) in the intracellular com-
partments. The subscript j will take the values 1, 2 3, and 4 for sodium, chloride,
potassium, and calcium, respectively (order of increasing atomic weight). The con-
centrations of excitatory and inhibitory transmitter substances in the extracellular
space (in particular in the synaptic clefts) will be designated T1 (x, t) and T2(x, t), re-
spectively. The intracellular (presynaptic) concentrations of these substances will not
be taken into account because transmitter in presynaptic terminals produce conduc-
tance changes only after release into the cleft.

Since we are only concerned with equilibrium membrane potentials, we assume that
the membrane potentials for neighboring pre- and postsynaptic membranes do not
differ significantly and hence take for their common value KV = V2 = V(x, t). This is
justified during SD because the large ratio of the intracellular to extracellular volumes
results in small changes in the intracellular concentrations of the ions (K+, Na+, and
C1-), which determine the equilibrium membrane potential. That is, changes in V are
determined chiefly by the extracellular concentrations of these ions.
The value of this membrane potential will be assumed to be given by the Goldman-

Hodgkin-Katz formula (see, e.g., Plonsey [ 1969])

V= (RT/F) In [(CO + pIC + P2C /(C3 + pICi + P2C2)], (3)

where R is the universal gas constant, Tis the absolute temperature, and F is Faraday's
constant. The quantities pi and P2 are the ratios of the sodium and chloride perme-
abilities of the membrane to the potassium permeability. The effects of other ions on V
is neglected. With each ion there is associated a Nernst equilibrium potential

V= (RT/zjF) ln (C,°/Cj), j = 1,2,3,4, (4)
where zj is the valence. The glial cell membrane potential is thus approximately given
by the potassium Nernst potential, V3.
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In the extracellular space, ions are free to diffuse from one part of the cortical struc-
ture to another, whereas intracellular ions can only diffuse within a limited region of
space or must first become extracellular before becoming free to diffuse over significant
distances. The model equations are thus diffusion equations with sources and sinks for
the extracellular ions and first-order differential equations for the intracellular ions.
Hence the intracellular ion concentrations increase or decrease according to fluxes
from or into the extracellular space.
The basic evolution equations for the ion concentrations are thus

Ot
1= .x2atj = Da C + gj(V _ Vj) + Pi, S

ac' a
' =

a
X [gj(V- Vj) + Pj], (6)

where j = 1, 2, 3, 4 and Dj is the diffusion coefficient for thelth ion species. The mean-
ing of each of the last two terms in Eq. 5 is as follows. We assume there is a membrane
"conductance," gj, and an associated driving potential, which is the difference be-
tween the membrane potential and the Nernst potential for the jth ion. Thus the cur-
rents gj( V - Vj) will, properly scaled, be the contribution of the "passive" membrane
fluxes to the rate of change of the ion concentrations in the extracellular space. The
terms Pj represent the contribution of active transport mechanisms (pumps) to the
ionic fluxes and will be positive or negative depending on the direction of transport.
Since conservation of the total number of ions is assumed, any ions that leave the
extracellular compartment alter the intracellular concentration. Hence, the rate of
change of the latter is given by Eq. 6, which is just the negative of Eq. 5 without the
diffusion term and with the scale factor a/( 1 - a), a being the fraction of the structure
that is extracellular space. Note that a may have different values depending on whether
the intracellular compartment referred to is pre- or postsynaptic. This complication
will be neglected in the following.

Contributions to the gj will come from nonsynaptic and subsynaptic membrane. We
now need to distinguish sodium, chloride, and potassium from calcium, which plays a
special role. For the former group of ions we assume that nonsynaptic membrane is
relatively unimportant in SD. There is some evidence (though certainly not conclu-
sive) that this kind of membrane conductance has an appreciable effect over rela-
tively small fractions of the total neuronal surface, for the main part densely packed
with synaptic endings (see, e.g., Conradi, 1969; Rinvik and Grofova, 1970; Dodge and
Cooley, 1973). It is not possible at present to estimate the effect of neglecting non-
synaptic membrane conductances. We will proceed to focus on contributions to the
gj that result from transmitter release, as the model so obtained predicts the correct
qualitative behaviors of the ion concentrations during SD.
The calcium conductance of the presynaptic membrane, expected to play a relevant

role, is assumed to be a function of the presynaptic membrane potential only, so that
94 = g4(V). The dependence on V is expected to show a threshold-type behavior, as
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found for squid stellate ganglion cells by Llinas et al. (1976). From these experimental
data, we assume that the transmitter release rate is proportional to the presynaptic cal-
cium current,

OTil/t a g4(V)(V - V4), i = 1,2. (7)

A more complete equation for the rate of change of transmitter concentration could
be written down with diffusion and active transport terms, but since transmitter may
play only a transient role at a given location, we do not pursue this complication here.
This transient role manifests itself in the concept of effective transmitter substance at
time t. The total amount of transmitter of type i released up to time t is obviously
proportional to

t T,Jt' -~idt' (8)

If the transmitter substance is only effective for a brief time, r, (on the order of milli-
seconds), then the effective amount of transmitter at time t is

T"(x, t) g4(V(x, t'))[V(x, t') - V4(x, t')] dt'. (9)

We now assume that at time t the conductance of the subsynaptic membrane for the
jth ion species (j = 1, 2, 3) induced by transmitter of type i is proportional to the
effective amounts of transmitter i present:

2

gj(xt) = A k i T:(x, t), j = 1, 2, 3, (10)

where the ki are constants.
In summary, the general model equations for the system are given by

aCq a2cq (2
t iD. +D j kMT* (V - V§) + P (11)
ax2\2

+

j = 1,2,3,OC' a ( 2 )3 (12
x2

aci~~~~a 4/d =D 24+X k494(V - V4) + P4, (3

OCi4/Ot = - 1 [k4g4(V - V4) + P4], (14)

where k4 is a lumped physiological parameter containing the amount of presynaptic
membrane per unit distance in the direction of propagation of the SD. These equa-
tions form a system of four reaction-diffusion equations for the extracellular ion con-
centrations, coupled with a system of four ordinary differential equations for the intra-
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cellular ion concentrations. Together they form a complicated system, despite our
very simplified approach.

A SIMPLIFIED MODEL INCLUDING ONLY K+ AND Ca++

The ions K+ and Ca++ play special roles in the general model. Potassium concentra-
tions have the greatest effect on the membrane potentials and calcium is presumed in-
strumental in the release of transmitter substances that produce postsynaptic con-
ductance changes leading to ion fluxes. It seems, and is borne out by the numerical
results, that a model that neglects the fluxes of Na+ and Cl- should exhibit the basic
SD phenomena. We have pursued this simplified model to reduce considerably the
large amount of computing time needed to solve the complicated system of Eqs. 11 -14.
In the simplified model it is convenient to change the notation: K0 and Ki denote ex-
ternal and internal K+ concentrations, CO and Ci denote Ca++ concentrations, and
subscripts K and Ca will be used in place of 3 and 4.
We adopt two further simplifications: (a) the synaptic conductance changes for K+

due to excitatory and inhibitory transmitter can be lumped into a single term; and (b)
the time T for which transmitter remains effective is so small that we make the follow-
ing approximation,

gCa(V)(V - VCa)dt' '_ TgCa(V)(V - Va) (15)

where V and VCa on the right side are evaluated at time t. Furthermore, the results of
Llinas et al. (1976) lead us to assume that the dependence of calcium conductance on
depolarization can be approximated by the sigmoidal function

gCa(V) = g0(l + tanh [pg(V + Vg)]), (16)

where g0, pg. and Vg are constants.
The membrane potential, given by Eq. 3, depends on the concentrations of Na+ and

Cl-, but in the simplified model these are held fixed. The effect on V of neglecting
sodium ion fluxes is not expected to be great because of the small relative permeability
of Na+. However, the chloride contribution to V is more significant. The flux of this
ion into the neurons during the depolarization phase of SD could be due to its ac-
companiment of sodium ions to partially maintain electroneutrality (Van Harreveld
and Fifkova, 1973) or due to activation of inhibitory synapses. Neglect of this flux
means a reduced depolarization as seen from Eq. 3. Furthermore, the diffusion of
chloride and sodium near the wave front will be in a direction opposite to the propaga-
tion of the SD wave. The local decrease in external chloride produces a more rapid
depolarization (noting that P2 >> p,) and hence will probably contribute to a de-
crease in the speed of the wave.

In the real neuronal structure the rates at which ions are actively transported across
the various membranes are determined not only by the ion concentrations but also
by the stimulation of metabolic processes that involve the release of energy by cleavage
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of ATP. The associated metabolic turnover during SD has been studied by fluores-
cence techniques (Rosenthal and Somjen, 1973; Mayevsky and Chance, 1974). The
observed increase in metabolism corresponds roughly with the repolarization phase
of SD (although it is difficult for a precise correspondence to be established) and has
been shown to be a consequence of, rather than an instigator of, SD. To avoid the
introduction of additional variables to describe the details of these metabolic processes,
we will assume that the pump rate for each ion depends only on the difference be-
tween the concentration of that ion and its resting value. In the model the direction
of transport will determine whether the intracellular or extracellular concentration of
the ion should be used and the pump terms will always restore that concentration to its
resting level. In reality there will be complications such as overshoot, the exchange
nature of certain pumps, and inhibition ofpump rates by the presence of large quanti-
ties of another ion. These complications will not be taken into account here.

Studies of the pump rates for a given ion have revealed a saturating effect at large
concentrations, indicating a maximum number of available pump sites in a given
membrane area (Sjodin and Ortiz, 1975; Sachs, 1977). For a pump that returns extra-
cellular ions to the intracellular compartment, as is the case for K+, a suitable expres-
sion for the pump consistent with an assumed zero pump rate at resting concentration
and saturating at large external concentrations is

PK = -fK(I - exp[-rK(K - K')]), (17)
where fK and rK are positive constants and KR is the resting value of external K+ con-
centration. It is realized that the pump rate is not in fact zero in the resting state be-
cause the resting membrane potential is maintained only with a small pump rate to
handle the leakage of K+ out of the cell. Here, however, we are concerned with de-
partures from the resting conditions. The negative sign in Eq. 17 indicates that the
pump decreases the extracellular concentration of K +. The expression may be derived
from probabilistic arguments by consideration of ion collisions with pump sites.

It might seem strange that our K+ pump term depends only on extracellular K+
when it is generally thought that Na+ and K+ are actively transported on an exchange
basis. There is also evidence that activation of the Na'-K + pump in cat cortex de-
pends in part on the level of intracellular Na+ (Heinemann and Lux, 1977). It is
known, however, that the K+ transport rate does not depend entirely on the presence
of intracellular Na+ for frog sartorius muscle fibers (Sjodin and Ortiz, 1975). In fact,
the potassium influx rate is 10 Aimol/g h for zero internal Na+ concentration for this
preparation. Our justification for Eq. 17 is that the changes in internal Na+ (actually
neglected in our simplified model) will be about the same as the changes in external
K+ (based on Kraig and Nicholson, 1976).
With the above simplifications and assumptions, the complete simplified model

equations become, at 370C,

V = 58 loglo[(K' + y)/(K' + 5)], (18)

VK = 58 logo[K0/K'], ( 19)
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K? = DKKOX + PlgCa(V)(V - VCa)(V - VK) + PK, (21)

K' = -[a/(1 - a)][P1gCa(V)(V - VCa)(V - VK) + PK], (22)
C? = DCaC°x + P2gCa(V)(V - VKa) + PCa, (23)

CT = -[a/(I - a)][P2gCa(V)(V - VKa) + PCa], (24)

PK = fK(l - exp[-rK(K - KI) + fK, (25)

Pca = fCa(1 - exp [-rca (C - CRD)]) + fC*aa (26)
where subscripts t and x's denote partial derivatives, -y and 6 contain the (assumed)
constant concentrations of Na+ and Cl-, previously introduced constants are col-
lected in pi and P2, and f and f a in the pump terms are necessary because our
choice of9Ca means there will be some leakage of K+ and Ca'+ at resting levels.

NUMERICAL RESULTS

To test the simplified model, we numerically computed the solutions to the initial-
value problems leading to the traveling wave solutions and to the annihilation of two
waves upon collision. The equations were finite-differenced in space and a Runge-
Kutta scheme was used to march forward in time. Because of the size of the time step
used and the operation of the Runge-Kutta package, it was necessary to set the source
terms, namely the passive current terms and the pump terms, equal to zero when V <
70 mV, KO < 2 mrM/liter, and Ci < 0.05 mM/liter to prevent the extracellular po-
tassium and intracellular calcium ion concentrations from going negative. This is no
restriction since these source terms normally prevent the extracellular potassium and
intracellular calcium concentrations from going below their resting levels. One further
complication in the model, which apparently does not lead to any difficulties when
coupled with this cutoff, is that the system of Eq. 18-26 themselves do not have a
unique rest state. However, except for the diffusion term, there is conservation of the
ion number between the intracellular and extracellular spaces and, as will be seen from
the numerical results, the ion concentrations return to the initial resting levels.
Though we had hoped to obtain physiological estimates of all the parameters in

Eqs. 18-26, this has not been possible due to lack of data on any particular neuronal
structure. We will pursue this approach and report the results at a later date. Some
heuristic understanding of the behavior of the solutions was obtained by several trial
runs, considering the necessary values of the parameters that would make the various
source and sink terms in the equations give rise to the approximate values of the rates
of change of the experimentally observed ion concentrations. In the results given and
discussed below, the following parameter values and initial values were used. Some of
these are approximately based on actual values from diverse studies on various struc-
tures (see the Appendix): DK = 2.5 x 1-0 Cm2/s, Dca = 1.25 x 10-5 cm2/s, go =
0.015 mho/cm2, pg = 0.11 (mV)-', Vg = 45 mV, a = 0.2, pi = -5 mM cm2/liter/s/
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mho/mV2, P2 = 0.5 mM cm2/liter/s/mho/mV2, y = 9 mM/liter, 6 = 40 mM/liter,
fK = -5.2 mM/liter/s, fc, = 0.052 mM/liter per s, rK = 10 liter/mM, rca = 40
liter/mM, KO = 2.0 mM/liter, CR = C'(x, 0) = 0.05 mM/liter, Ki(x, 0) = 140 mM/
liter, CO(x, 0) = 1.0 mM/liter. The values of f and f*a are then determined by set-
ting them equal and opposite to the values of the net source and sink terms evaluated
at resting levels. Because of the imposed cutoffs,f* = 0 for the results below.
In light of our ignorance of accurate values of the parameters, the only possible com-
parison with experiment, at present, is a qualitative one.

Solitary SD Wave

A local Gaussian distribution of K+, representing an application of excess K+ in the
form of say, KCI, was added to the resting extracellular level to give a peak value of
40 mM/liter. Due to the spatial symmetry of the initial ion concentrations and the
equations, this gives rise to two SD waves, one moving to the left, the other moving to
the right. Fig. 2 follows the one moving to the right and shows the concentrations of
extracellular K+ and Ca++ as functions of distance at various times. The initial dis-
tributions of extracellular K+ and Ca++ are shown at t = 0 and the resulting waves at

[mM/liter]

5

tnni

nrI

FIGURE 2 FIGURE 3

FIGURE 2 Solitary SD waves in response to a local excess of K+ centered at x = 0. Solutions
of the simplified model equations for external potassium and calcium concentrations as a function
of distance in the direction of propagation. The initial distributions are shown at t = 0 and the
resulting waves of increased K+ and decreased Ca+'+ are shown for t = 16 and 32 s.
FIGURE 3 The time-course of the membrane potential V and the potassium and calcium Nernst
potentials during passage of the solitary SD wave at the point x = 0.38 mm. Note that VK and
hence V return to their resting values well ahead of VCa.
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times t = 16 and 32 s. The solutions seem to be steady, progressing waves of increased
K+ and decreased Cal' with monophasic profiles. The front of the wave exhibits the
characteristic rapid increase in the K+ concentration and slightly less rapid decline in
the Ca"+ concentration. It is noted that K+ returns to its resting level before Ca"+
returns to its initial values. This feature is consistent with the experimental results for
these ions (Nicholson et al., 1977). In our model, if Ca"+ returned to its initial values
before K+ returned to its resting level, there is the possibility of a second wave being
generated.
The propagation velocity of the waves shown in Fig. 2 is about 1.5 mm/min. A

slower speed is obtained if allowance is made for the circuitous path of ions around
neurons and glia in the intercellular clefts. If cell processes are assumed to be cylindri-
cal obstacles (clearly an oversimplification), then a scale factor of about 7r/2 should be
applied to distances in the model. (See the Appendix for more discussion on geometri-
cal factors and effective diffusion coefficients.) Hence the velocity of the SD wave
corresponding to the numerical solutions of the model equations in an actual structure
would be about I mm/min. This is slightly below the experimental range of velocities
of SD (2-6 mm/min; Ochs, 1962). Several factors could increase the wave speed. The
rate of increase in the extracellular potassium concentration is less than observed ex-
perimentally (Nicholson et al., 1977); therefore, the source terms in the model could
be increased, which would result in an increased speed. Contributions to the increase
in the extracellular [K+] froin fluxes through nonsynaptic membrane (e.g., during
action potentials), neglected here, would clearly increase the wave speed. In fact, the
results obtained with the model we have investigated and experimental results should
only be compared with reference to TTX-treated cortex. We should emphasize that
even in this case, an exact comparison of the wave speeds from the model and experi-
ments is premature because we have not as yet been able to obtain accurate parameter
values for the various source and sink terms. Similar remarks apply to the durations
(for fixed x) of the membrane potential and extracellular K + waves computed from the
model and observed in TTX-treated cortex (see Fig. 14 in Sugaya et al., 1975), which
are shorter than observed in normal cortex.

Fig. 3 shows the time-courses at a fixed spatial point of the membrane potential and
the potassium and calcium Nernst potentials as the SD wave passes by. As SD enters
the region, K+ increases abruptly, decreasing (in magnitude) both the potassium
Nernst potential, VK, and the membrane potential, V. External Ca++ decreases less
rapidly and this is reflected in the slower decline of Vca. The potassium efflux becomes
exceedingly small when the potassium Nernst potential and the membrane potential
are almost equal. This means a reduction in passive K+ efflux so the pump can then
dominate, causing the return of extracellular K+ to its initial value. When V is about
equal to VK, the difference between V and VCa is still quite large, so the force driving
Ca++ into cells is not yet negligible, and dominates the calcium pump. However, the
value of Vca eventually becomes quite close to V, making the Ca++ influx very small,
so that now the calcium pump is dominant and calcium ions are returned to the extra-
cellular space. Meanwhile, excess K+ has diffused forward around relatively nonde-
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FIGURE 4 Annihilation ofSD waves. Two solitary waves are generated at the ends of an interval
and approach each other. The potassium and calcium ion concentrations are shown just before
the collision at i = 30 s. At t = 33 s the two waves have partially collided. The distinction
between the two waves is lost at t = 36 s. Finally the potassium wave decays towards the resting
level at t = 39 s. Note that the calcium ion concentration has not yet begun to return to its
resting level at x = 0.

polarized regions to start the same chain of events. When conductance changes for K+
and Ca++ occur, these ions move so as to make their concentrations equal inside and
outside the cells. The subsequent repolarization is a natural property of the system
that has not yet been analyzed. It is noteworthy that the repolarization occurs without
conductance inactivation or transmitter depletion (both of which cannot be excluded
from consideration).

Annihilation of Colliding SD Waves

SD waves that meet each other head on are known to annihilate each other. We ran
two solitary SD wave solutions into each other in our model cortical structure and the
results, shown in Fig. 4. clearly demonstrate the phenomenon of annihilation. Again
K+ must return to its initial concentrations before Ca++ returns to its initial values to
prevent the start of new waves.

CONCLUSIONS

The simplified model system thus successfully predicts the basic qualitative properties
-of SD waves in real neuronal structures. Knowledge of the physiological parameters of
the model is incomplete but we feel that this model is a starting point for future quanti-
tative work. It is feasible that other models that focus on different mechanisms, in par-
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ticular for the repolarization phase of SD, would also successfully predict the proper-
ties of SD waves. We have focused solely on transmitter release and its subsequent
postsynaptic conductance changes as the source of K+. A complete model would have
to take into account contributions from nonsynaptic membrane, but we have elected to
ignore this complication. Much further theoretical and experimental work is needed
before a complete understanding of the fascinating phenomenon of SD can be ob-
tained.

Finally, we point out that reverberating SD waves could be studied within the frame-
work of the above model by including a second space dimension. The introduction of
a vertical dimension is probably necessary to explain the characteristic DC slow po-
tential changes measured at the surface and the observed distribution of potential as a
function of depth in the cortex. These additional features will be considered in later
papers.

APPENDIX

Parameter Values in the Numerical Calculations
As pointed out in the main text, it was not possible to obtain accurate values of the parameters
in the model Eqs. 11-14 and in the simplified model Eqs. 18-26 for which numerical solutions
are reported. To illustrate the difficulties, the parameter p, in Eq. 21 involves: (a) the time for
which transmitter is effective in producing conductance changes in postsynaptic membrane;
(b) the conductance change produced in postsynaptic membrane per unit area per unit quantity
of released transmitter; (c) the calcium ion conductance of presynaptic membrane per unit area
at large depolarizations; (d) the areas of post- and presynaptic membrane in a column of cortex
of unit length in the direction of propagation of the SD wave. (Further complications arise if
one considers the depth dimension-both (b) and (d) will vary throughout the various cortical
layers.) Since all of these physiological and anatomical variables are not known for any specific
cortical structure (nor even any one of them as far as we know!), we adopted a heuristic and
partly phenomenological approach to estimate many of these parameters for use in the sim-
plified model equations.
The resting value of external K+ concentration, 2 mM/liter, was taken from Kraig and

Nicholson's (1976) results for the molecular layer of the cerebellum of Corydoras aneus. The
resting value of external Ca`+ concentration, 1 mM/liter, is based on Nicholson et al.'s values
of 1.0 mM/liter for cat 0.7 mM/liter for rat cerebellum (1976, 1977, respectively). The resting
internal K+ concentration, 140 mM/liter, is approximately the value given for cat spinal moto-
neurons (Eccles, 1957), and was chosen in conjunction with the constants Y and 6, which con-
tain contributions from Na+ and Cl concentrations and the permeabilities of these ions, to
give a resting membrane potential of about -70 mV. This is close to the average potential of
-67 mV reported for 14 stable cells in rabbit cerebral cortex (Collewijn and Van Harreveld,
1966). The resting internal Ca`+ concentration, 0.05 mM/liter, was chosen to be of the same
order of magnitude as the estimate of 0.01 mM/liter for the concentration of unbound Ca`+ in
squid axon (Hodgkin and Keynes, 1957).
The parameter a, the fraction of cortical tissue that is extracellular (intercellular) space was

set at 0.2, the average of the values of 0.05 and 0.35 given by Blinkov and Glezer (1968). The
value 0.2 was also given by Lux and Neher (1973) for cat cortex.
The values of the diffusion coefficients, DK = 2.5 x 10-5 cm2/s and Dca = 1.25 x 10-5 cm2/s,

are based on the values for aqueous diffusion given in the American Institute of Physics Hand-
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book (1963). Assuming that the diffusion coefficients of K+ and Ca++ in the extracellular
fluid of the brain are about those in aqueous solutions means that x, the spatial coordinate,
measures the path length of ions around the various neuronal and glial processes. This can be
converted to distance traveled by the SD wave by allowing for geometric factors. Though we
suggest a factor of ir/2 to allow for cylindrical obstacles, we realize that the true situation is
much more complicated. McLennan (1957), for example, suggested a scale factor of 2 be ap-
plied to the diffusion coefficients to allow for slowing by various obstructions. When diffusion
occurs through narrow clefts, a scaled diffusion coefficient is sometimes appropriate (Nicholls
and Kuffler, 1964) but these authors deduced that for small ions such as K+ this scaling was
not necessary. Lux and Neher (1973) suggested an effective diffusion coefficient D* = DK/6
in cat cortex but this scaling involved both geometric considerations and unquantifiable cell
source and sink mechanisms. Similarly, Fisher et al. (1976) have found that the effective diffu-
sion coefficient for K + in the "vertical" direction of cat cortex is about 2.86 x 10-6 cm2/s, but
claimed that the low value of the diffusion coefficient relative to its value in aqueous solution
was due to the "tortuosity of the extracellular space" and other "unknown factors."
The parameters pg and Vg in Eq. 16, which determine the variation (but not the magnitude)

of the calcium conductance of presynaptic membrane with depolarization were obtained as fol-
lows. From the data of Llinas et al. (1976) on the squid giant synapse, the shape of the varia-
tion of gCA(V) with V was obtained by assuming a value of VCa = 150 mV (based roughly on
data for squid axon [Hodgkin and Keynes, 1957]) and then dividing the measured presynaptic
(peak) calcium current by (V - Vca); this givespg = 0.11. The value of Vg was set at 45 mV to
make the abrupt increase in presynaptic calcium conductance occur at the value of V expected
during the initial rising phase of the K+ concentration, as measured by Nicholson et al. ( 1977)
for rat cerebellum, allowing for our choice of y and 6 and the resting external and internal
K + concentrations.
The remaining parameters are go, PI, P2, which determine the magnitudes of the source term

for K + and the sink term for Cal+, and the four pump parameters fK, rK, cfa' and rCa. The
experimentally measured time-courses of K+ and Ca`+ guided us in our choice of values for
these parameters (Nicholson et al., 1977). At typical external K + and Ca++ concentrations
in the early part of the depolarization phase of SD, the various terms in Eqs. 21-24 were com-
puted. The strength of the source term for K+ (determined by the product of go and p,) was
chosen to dominate the K + pump term, while simultaneously the sink term for Ca +̀ (involving
gOp2) dominated the Ca++ pump term. The values were chosen in such a way to ensure that
the computed aK/Ot and OC/Ot values in the model equations were about the same as the cor-
responding experimental values. Typical values of the ion concentrations at the peak of the SD
wave were then considered and the strengths of the sources and sinks in the model computed.
Here it had to be ensured that the K+ pump term dominated the K+ source term and the Ca`+
pump term dominated the Ca`+ sink term. Again an approximate match of the aK/at and
OC/lt values predicted by the model and the experimental values of these rates of change dur-
ing the repolarizing phase of SD was sought. After examination of the effects of various com-
binations of parameters, the values given in the text were found to give the desired solitary wave
solutions with approximately the correct order of magnitudes for the rates of change of the ex-
ternal ion concentrations.

This work would not have been complete without the obtaining of numerical solutions of the model equa-
tions. That task was admirably performed with great perseverance by Richard C. Lee. We have been guided
by and consulted with numerous people in the course of this work: Doctors D. M. J. Quastel, E. Puil, T.
Hattori, E. McGeer, J. H. Quastel, H. McLennan, J. J. Miller, and S. Assaf of the University of British
Columbia; Drs. H. Higashida and J. Rinzel of the National Institutes of Health, Bethesda, Maryland; Dr. E.
Goldensohn of Columbia University, New York; Dr. A. Van Harreveld of the California Institute of Tech-
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nology, Pasadena, Calif.; Drs. B. Hille and P. Schwindt of the University of Washington, Seattle, Wash.;
Dr. K. Berry of Vancouver General Hospital; Drs. J. A. Freeman and W. A. Altemeier of Vanderbilt Uni-
versity, Nashville, Tenn.; and Dr. R. R. A. Brock of the Florey Clinic, Adelaide, Australia.
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