Applications of modelling clinically recorded datasets

John R. Terry

Outline

- ➤ Introduce different clinical techniques for recording neural activity
- > Explore relationship between cognitive state and neural activity
- Describe transitions in data associated with epilepsy
- > Absence seizures
- Clinical challenges in diagnosis
- > Describe models of EEG recordings
- > Explore use in the clinical environment
- General Anesthetic Agents
- > Use of models to enhance understanding

fMRI

- Measures blood oxygenation/flow (The BOLD response)
- ➤ Higher oxygen consumption implies higher neural activity
- ➤ Believed to be due to changes in synaptic activity rather than increased neural firing
- ➤ Convolution models of the haemodynamic response (balloon model, Windkessel model)

Stephan et al. Cur. Opinion Neurobiology **14** 629-635 (2004)

Advantages: Non-invasive, simple to measure, good spatial resolution

Disadvantages: Slow response time - poor temporal resolution, cost

MEG

- > Records magnetic activity
- ➤ Fields are produced by same electrical changes that give rise to EEG post-synaptic current flow across pyramidal neurons
- Magnetic fields 'unaffected' by conductivity of tissues within the head

Advantages: Excellent temporal resolution,

better spatial resolution than EEG

Disadvantages: Cost, fMRI has better spatial resolution

EEG

- ➤ Richard Caton made the first report of the electrical activity of the brain in Edinburgh! (1875)
- ➤ Hans Berger credited with first performing EEG in humans (1924)

EEG from Berger's 6yr old!

10Hz sine wave

Electroencephalography:
Basic Principles and Clinical
Applications
Niedermeyer and Lopes da Silva

EEG

Theta (@) 4-Children, sleeping adults

Delta (δ) 0.5-Infants, sleeping adults

Spikes Epilepsy petit mal 0.5-4 Hz

200 V [μ√] 100

- ➤ These early studies demonstrated a link between EEG activity and brain state:
- ➤ "When any part of the grey matter is in a state of functional activity, its electric current usually exhibits negative variation" Caton (1875)

Time [s]

Epilepsy

- ➤ The tendency to have repeated <u>seizures</u>
- Seizures are "transient periods due to abnormal, excessive hyper-synchronous neuronal activity" (Fisher et al. 2005)
- ➤ Around 40 different subtypes classified as general or partial, complex or simple

Petit-Mal (or Childhood Absence Epilepsy)

2-4Hz Spike-Wave Discharge - "textbook" rhythm

Electroencephalography:
Basic Principles and Clinical
Applications
Niedermeyer and Lopes da Silva

Petit-Mal Sonata: Predominant EEG seizure patterns in CAE Sogawa, Mosche *et al.*

Petit-Mal (or Childhood Absence Epilepsy)

2-4Hz Spike-Wave Discharge - "textbook" rhythm

Electroencephalography:
Basic Principles and Clinical
Applications
Niedermeyer and Lopes da Silva

Petit-Mal Sonata: Predominant EEG seizure patterns in CAE Sogawa, Mosche *et al.*

Modelling EEG

- ➤ Modelling neural data recordings has a long history
- > To build a specific model of EEG data we should first consider:
 - What does EEG represent?
 - What are the underlying contributors to this?

Modelling EEG

- Modelling neural data recordings has a long history
- > To build a specific model of EEG data we should first consider:
 - What does EEG represent?
 - What are the underlying contributors to this?

Challenges

- ➤ Consideration of 10¹² neurons or even 10⁴ macrocolumns
- > Localisation of distribution of electrical activation
- ➤ Understand how local synaptic interactions mediate synchrony responsible for underlying field potentials that form EEG
- Do observed rhythms originate from neuronal pacemakers?
- ➤ Are macroscopic dynamics an *emergent* property not apparent at the neuronal level?

Thalamocortical Networks

- ➤ Some EEG rhythms can be explained by ensembles of neurons projecting their activity into the cortex
- ➤ In particular thalamic neurons which are able to display intrinsic oscillatory behaviour (even when synaptic transmission is blocked)
- ➤ These properties are suggestive of a fundamental role in sleep spindle and absence seizure activity

Destexhe & Sejnowski Thalamocortical Assemblies

Oscillating Circuits

Dynamical equations

Positive and negative feedback

au Time Delays

Q. What is the minimal circuit required for oscillation?

Milton (2003)

Destexhe & Sejnowski (2001)

- ➤ Aim is to build a macroscopic model, whose state variables can be mapped onto EEG recordings
- Partially circumvents the need to model all physiological details
- ➤ We will build a *mean-field model* that describes aggregated activity of the implicated neuronal populations

```
Deco et al. PLOS CB 4, 1000092 (2008)
Jirsa Neuroinformatics 2, 183 (2004)
Liley et al. Network: Comp Neural Sys 13, 67 (2002)
```

The specific model we will focus on is described in

```
Marten et al. Phys Rev E 79, 021911 (2009)
Marten et al. Phil Trans Roy Soc A 367, 1145-1161 (2009)
```

This model is adapted from

Robinson et al. Phys Rev E 65, 041924 (2002)

> Freeman in the 1970s explored the response of a neural mass to an electrical input

Freeman Mass Action in the Nervous System (1975) Lopes da Silva *et al.* Kybernetik **15**, 27 (1974)

➤ This biexponential response may be modelled using a 2nd order ODE:

$$\left(\frac{1}{\alpha\beta}\frac{d^2}{dt^2} + \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)\frac{d}{dt} + 1\right)V(t) = I_{ext}$$

> By assuming the rise time to be infinitely fast, a 1st order equation is used in some models instead

Wilson & Cowan, Biophys. J. **12**, 1 (1972) Liley *et al.* Network: Comp Neural Sys **13**, 67 (2002)

➤ Jirsa and Haken described a wave to pulse and a pulse to wave converter to account for incoming/outgoing fields of activity for an average neuronal population

Jirsa & Haken Phys Rev Lett **77**, 960-963 (1996)

> Based upon these assumptions we may build a population level model

> Each neural mass (PY, RE, TC) is described by four dynamical laws:

1) Mean soma membrane potential

$$\left[\frac{1}{\alpha\beta}\frac{\partial^{2}}{\partial t^{2}} + \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)\frac{\partial}{\partial t} + 1\right]V_{a}(t) = P_{a}(t)$$

2) Mean firing rate

$$\zeta_{a}(t) = \frac{Q_{a}^{\text{max}}}{1 + \exp\left[-\frac{\pi}{\sqrt{3}} \left(\frac{V_{a}(t) - \theta}{\sigma}\right)\right]}$$

3) Field equation

$$\frac{1}{\gamma_a^2} \left[\frac{\partial^2}{\partial t^2} + 2\gamma_a \frac{\partial}{\partial t} + \gamma_a^2 \right] \phi_a(t) = \gamma_a^2 \zeta_a(t)$$

4) Post-synaptic input

$$P_a(t) = \sum_b v_b \phi_b(t)$$

Numerical Simulation

Numerical exploration demonstrates a qualitative agreement between model and clinical data

Numerical Bifurcation Plot

corticothalamic weight and time delay corresponding to GABA_R process were natural parameters to vary

Breakspear et al Cereb Cortex 16, 1296 (2006) Rodrigues *et al* Phys Lett A **355**, 352 (2006)

Numerical Continuation

- > Technique for tracking branches of bifurcations as parameter(s) vary
- > Common packages include AUTO, XPPAUT, MATCONT, DDE-BIFTOOL See Hinke Osinga's site http://www.enm.bris.ac.uk/anm/staff/hinke/dss/index.html

- Standard continuation methods only give us the "common" bifurcations (HB, PD, SL).
- However, from the time series we observe more complex solutions.
- New additional routine allows us to find inflection point branches.

Characterising Seizure Evolution

➤ Could these results be applied to characterizing seizure evolution?

Q. How do we interpret seizure evolution?

- a) Deforming attractor?
- b) Transient solution towards a fixed attractor?
- c) Transient solution towards a deforming attractor?

Characterising Seizure Evolution

> Could these results be applied to characterizing seizure evolution?

Characterising Seizure Evolution

- ➤ 1) To map out the progression of EEG during absence seizures in a low-dimensional parameter-space (say 2-3 parameters of interest).
- > 2) From this: test if progress consists of random 'jumps' or a more 'function-like' relationship.
- ➤ 3) Group subjects according to how these parameters change. Could be used to classify subjects?
- 4) Investigate if some parameters vary in a similar manner between subjects, and perhaps use a more detailed model to investigate them.

> Cortical drug response is another area where mean-field models have been utilised successfully

> Seems Challenging!

➤ Mean-field models describe population response; psychoactive agents target individual molecules

- ➤ Predominant pharmaceutical action of a general anesthetic agent believed to be as a GABA_A agonist.
- ➤ i.e. they potentiate amplitude / frequency of IPSPs via positive modulation **SOMEHOW!**
- ➤ GABA_A contains a large subunit / subtype diversity
- \succ Recent studies have shown specific drugs target specific subunits i.e. benzodiazepines may be sensitive to specific α and γ subtypes, whilst anaesthetics differ in affinity relative to β subtypes.
- ➤ Care must be taken when modelling these differences, as small changes in IPSP shape, can lead to big macroscopic differences

Foster *et al* Cognitive Neurodynamics **2**, 283 (2008)

- ➤ Steyn-Ross *et al* built a 1d cortex of linked neural masses to allow comparison of spatial inhomogeneities observed in EEG
- Concluded that transition to unconsciousness corresponded to a phase transition due to increases in inhibitory effects

- > Some agents have been shown to promote epileptiform acitivty
- > Seemingly at odds with suppressive nature of compounds
- ➤ Liley & Bojak modelled this by fitting specific form of IPSP profile from in-vivo studies

> Agents which acted to reduce amplitude of IPSP whilst increasing overall inhibition raised the risk of seizure activity

Liley & Bojak J. Clin. Neurophys. 22, 300 (2005)

➤ More recently Molaee-Ardekani *et al* showed good qualitative agreement between model and EEG recordings when in addition to IPSP suppression, adaptation of the firing rate functions was

included

Molaee-Ardekani *et al* Phys Rev E **76** 041911 (2007)

Summary

- > Many neurological disorders require novel approaches to develop new treatment strategies; both pharamacological and macroscale
- ➤ Mathematical and computational techniques can assist in interpreting clinical and experimental data
- ➤ Many clinically recorded neural data sets evolve dynamically; differential equation based modelling is an ideal framework
- ➤ Crucial to develop closer interactions between mathematicians and clinical / experimental neuroscientists COMMON LANGUAGE!
- ➤ I have a folder of many of the early (1970s) and not so early material described in this talk, please see me with a memory stick if you'd like a copy!

