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model

+ Spatially extended models




Complex spatial structure

Motor neuron from spinal cord Mitral cell from olfactory bulb Pyramidal cell from cortex
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The contacts of the axon to
target neurons are either
located on the dendritic tree
or directly on the soma, and
are known as synapses
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Differences in the ionic concentrations of
the intra/extracellular fluids create a

potential difference across the cell lonic gates are embedded in the cell
membrane and control the passage

of ions







Action potential
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e In the absence of a signal, there is a resting potential of ~ —65mV.

e During an action potential, the membrane potential increase rapidly to ~ 20mV, returns
slowly to ~ —75mV and then slowly relaxes to the resting potential.

e The rapid membrane depolarisation corresponds to an influx of Na™ across the membrane.
The return to —75mV corresponds to the transfer of K™ out of the cell. The final recovery
stage back to the resting potential is associated with the passage of CI~ out of the cell.




Experimental setup in vitro
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Single-compartment models

The Nernst potential
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a b C

Diffusion of K* ions down the concentration gradient through the
membrane (a) creates an electric potential force directed at the opposite
direction (b) until the diffusion and electrical forces counter each other (c)

resulting in the Nernst equilibrium potential for K*
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Nernst potentials = Reversal potentials

Outside

Na (145 mM)
Active o+
Transport K™ (5§mM)
S C17 (110 mM)
_ Ca2"(2.5-5 mM)
Inside A” (25 mM) 2loc =2 = 90 mV
Na™ (5-15 mM) ' 6l mV
K* (140 mM)
Cl™ (4 mM) 9 loo -2 — —90 mV
CaZ*(0.1 uM) o
A" (147 mM) ~ 2log HY = 89 mV

Equilibrium Potentials

Passive . ;
Redistribution a . N = = 136 IIl\"T

= 146 mV
Na™ Cl°

Passive redistribution and active transport
support the concentration asymmetry




The membrane model

Extracellular

Ohm’s law: | = K

R

g -conductance
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Intracellular

1.the phospholipid bilayer, which is analogous to a capacitor Iin that it
accumulates ionic charge

2.the ionic permeabilities of the membrane, which are analogous to
resistors

3.the electrochemical driving forces, which are analogous to batteries
driving the ionic currents




the current flow through a single K* channel IK — gK(V — VK)

K (mS/cmz) - the conductance of the K* channel

(V — VK) - the K* driving force across the membrane

Lon=Y Ii=Y g(V—V)=gx(V—Vk)+gna(V — Via) + ..

dV

the capacitive current across the membrane Icap = Cma

dV
Iapp: mdt Iion




The main equation of the membrane |~ dV _ (V —=V)+1
model " dt ;gz( )+ Lape

The Hodgkin-Huxley model
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gNa(V — VNa)

1949,
Plymout

Andrew Huxley Alan Hodgkin

They established experimentally the voltage dependence of ion conductances
in the electrically excitable membrane of the squid giant axon




A gated ionic channel

Closed

fo - the fraction of open channels fo = No /N
fc = N¢/N

the transition from state O to state C J_ =k fo
the transition from state C to state O J+ — k:+fc e k+(1 — fo)

rate of change = inflow rate - outflow rate

d.fO_ %_foo_fO
o =+ I- » @ = -

T=1/(k" +k") fo=kT/(k” +k")




inactivation
0.6

activation

04

0.2

gk = gk(V) and gna = gna(V)

&0 ” - 20 0
V(mV)

The great insight of Hodgkin and Huxley was to realise that (K
depends upon four activation gates:

g = ggmn

4

dNa  depends upon three activation gates and one inactivation gate:




The Hodgkin-Huxley model

dV
mE — —§Kn4(V — VK) — §Nam3h(V - VNa) - gL(V - VL) + Iapp
dy _ Yoo (V) — 4
dt Ty (V)

y={m,n,h}

‘@f

_ oo_fO
dt T

V(t) (mV)
V(t) (mV)
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Basic functions of neurons

1. Generate intrinsic activity

2. Receive synaptic inputs

3. Integrate signals

4. Encode output patterns

5. Distribute synaptic outputs

4. Encoding
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5. Output




Distinct firing patterns

Layer 3 spiny stellate

Layer 4 spiny stellate

Layer 3 pyramidal

Layer 5 pyramidal

From Mainen and Sejnowski, 1996




Spatially extended models

Non-isopotential structure

Isopotential soma

VW\( » dendrites
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Linear cable theory
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Using current balance
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Infinite cable and constant current [ at X = 0

Torg A
V = 072 exp (——

5.7 1.6

T

IUI)\
V(IX.T) = " Nexp(—=X)erfe [ —— — VT ) — exp erfe
(1) = 22 (Xt (7 p(X)




Infinite cable and delta-pulse stimulus Istimujus = (%)

Solution — Green’s function

Gool,1) = Var Dt




Infinite cable and an arbitrary stimulus

lj(t)

v {

Y

V(x,t) = convolution of initial data

_|_

convolution of stimulus

t

Goolw — 2", ) Vo (2" da' + / Goolw —y,t —s)I(s)ds
0




The Rall model

Dendritic

Equivalent cable

3/2 law

Membrane
Equivalent
Circuit

l

X=0 Equivalent Cylinder

Soma - Dendrites




An arbitrary tree

S Terminal

Gij(X,y, t)

continuity of potentials &

conservation of current
‘Sum-over-paths’ approach

(L.F. Abbott,1992)

Trips
X — 2—»4—>y Gl] X, Y, t ZAtnp I—trip»t)




o 3/2
Coefficients Atrip Factor of segment Dy, = A 573

k on mnode L
m
node ) K node
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Quasi-active dendrites. Motivation

A rat CA1 hippocampal
pyramidal cell visualised with
differential interference contrast
optics using infrared illumination

|
Dual simultaneous whole-cell patch-clamp recordings

Dendritic & somatic recordings with respect to rest (at about -70 mV)
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Quasi-active membrane

nonlinear current dV

o2
dV /

dt

I'=1(V, [)

(with a single gating variable)
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dendrites

N\ On each branch
AN

g a

soma

V.V PV
o~ 7 T Paxe

Using Laplace transform * For example, for infinite cable

Ho(()X) _ e IX

=D 2w

1

2 —
v (w) 5 oL,

Recovers expected result as r. — OO Passive system

Y (w) = (1/7 +w)/D




Sum-over-trips (quasi-active membrane)

3

> Seek a solution in terms of H

2pp(w) — 1

G’ij (X Yaw) — H’ij (7i<w)Xa Vg (w)Yaw)/(Djfyj (w))




Application

Resonance associated with [;, current

Model of nonlinear [;, current ( Magee (1998) Journal of Neuroscience 18 )

]h — gh(V — Vh)f f(V) - a single gating variable

20

Dashed line: Magee’s current
Solid line: ‘LRC’ circuit
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Natural frequency (* =

GOO(X, w*) — MaX

Idealised geometry

Two semi-infinite branches

branch 1 l l branch 2 Resonant frequency Q

X Y Y

G (X,Y,w) Gio(X. Y, w) 0G;(X,Y,w)/0w =0




Two semi-infinite resonant branches

Vi \_

-10

wi = 9.11 Hz wy = 17.75 Hz

-20
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Three semi-infinite resonant branches
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200 400 600
t (ms)

S Coombes, YT, C-M Svensson, G J Lord, K Josic, S J Cox and C M Colbert
Biological Cybernetics (2007) Vol 97, pp. 137-149




Spiny dendrites

Ramon y Cajal, 1896 Andreas Herzog http:/liesk.et.uni-magdeburg.de/~herzog/

Learning and memory, logical computations, pattern matching, amplification of
distal synaptic inputs, temporal filtering

Action potentials in spine apparatus seen using Calcium dyes + confocal
microscopy

Experimental observations of travelling waves in distal dendritic trees

For a perspective see Segev & Rall ‘Excitable dendrites and spines: earlier theoretical
insights elucidate recent direct observations ’'Trends in Neuroscience 21(11), 1998




Baer&Rinzel model
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(> <‘> Spines
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a9V _
dt

Baer & Rinzel J.Neurophysiol.,1991




Variations in spine distribution

Continuum model Discrete model
p(x) = const plz) =2, 0(x —an)

Distance




The Spike-Diffuse-Spike model

Motivation — to develop a Intégrate-andiFire
simplified model, still Spine-head (active)

biophysically realistic but
computationally cheap! l

'V

Den\ti}l/c cable (passive)

oV 0°V VvV

—:D | 5(ZB—ZE )Isp
Ot or2 T '%: "

AN

\/  -action potential
from active spines

Viwn,t) =3, 0t = T7")

Coombes & Bressloff SIAM J Appl Math 2000, PRL 2003




Spine-head
dynamics (IF)

Firing times: T = inf{t | U,(t) > h, t > T ' + 75}

TR -refractory time

Reset:  [J(x,,t7) =0 whenever U(xy,t) =nh




Saltatory wave

Spines: *,, = nd
Firing events: 7 — nA

Speed: v = (/A

Self-consistent speed

YT, Lord & Coombes 2006 J.Comput.Neurosci. 21

BR model - Z

’ SDS model




Irregular distribution of spines

I‘I

Distance

Distance




Compartmental models

| A | ITRTES (vu+1 o vu) T O, u—1 (vu—1 T Vu)
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Simulation software tools

GENESIS (http://www.genesis-sim.org/GENESIS/)

NEURON (http://www.neuron.yale.edu/neuron/)




THE THEORETICAL
FOUNDATION
OF DENDRITIC FUNCTION

Selected I,.I}\k'l'\ ot

WILFRID RALL

with Commentaries

edited by
[dan Segev, John Rinzel, and

Gordon M. Shcp]u‘rd

l. Segeyv, J. Rinzel and G. M. Shepherd,
The Theoretical Foundation of Dendritic
Function: Selected Papers of Wilfrid Rall
with Commentaries, MIT Press,
Cambridge, MA, 1995




Henry C. Tuckwell

Cambridge Studies in Mathematical Biology

Introduction to
theoretical neurobiology

Volume 1
Linear cable theory and dendritic structure

H.C. Tuckwell, Introduction to theoretical
neurobiology. Volume 1: Linear cable theory
and dendritic structure, Cambridge Studies in
Mathematical Biology, 1988

Henry C. Tuckwell

Cambridge Studies in Mathematical Biology

Introduction to
theoretical neurobiology

Volume 2

Nonlinear and stochastic theories
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G. Stuart, N. Spruston, M. Hausser, Dendrites,
Oxford University Press, 2008

dendrjites

second edition '

edited by
greg stuart
nelson spruston

michael hausser




