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The anatomy of an oscillator

The anatomy of an oscillator
Q: What is an oscillator?
A: A dynamical system that produces periodic behaviour.

For example, in Rd :

ẋ1 = f1(x1, · · · , xd ), ẋd = fd(x1, · · · , xd)

with a periodic orbit
P(t) = (p1(t), · · · , pd(t))

with period T > 0, i.e.
P(t + T ) = P(t)

such that T is smallest possible choice of periodicity of all components.
We consider stable limit cycle oscillators of ODEs for any initial condition x that
starts close enough to P(t) in all components we have

|x(t) − P(t + φ)| → 0

as t → ∞ for some φ.
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The anatomy of an oscillator Motivating example

Motivating example

Consider the Fitzhugh-Nagumo system

V̇ = F (V ) − W + I

Ẇ = ǫ(V − γW )

with F (V ) = V (1 − V )(V − A) and parameters

A = .25, ǫ = .05, γ = 1, I = .25
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The anatomy of an oscillator Motivating example

Phase plane of typical solution with flow added.
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The anatomy of an oscillator Motivating example

Code for xppaut [Ermentrout]:
http://www.math.pitt.edu/˜bard/xpp/xpp.html

dv/dt = f(v)-w+s(t)+I 0
dw/dt = eps*(v-gamma*w)
f(v)=v*(1-v)*(v-a)
s(t)=al*sin(omega*t)
param a=.25,eps=.05,gamma=1,I 0=.25
param al=0,omega=2
@ total=100,dt=.2,xhi=100
done
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The anatomy of an oscillator Motivating example

Give it a try?

Peter Ashwin (University of Exeter) Modelling coupled oscillators 22nd March 2009 10 / 36



The anatomy of an oscillator Motivating example

Different types of periodic oscillations:

Weakly nonlinear oscillations, e.g. Near-onset small amplitude oscillations,
Hopf bifurcation.

Relaxation oscillations, e.g. Fitzhugh Nagumo, Hodgkin-Huxley models

Hybrid/switched system oscillations, e.g. leaky integrate-and-fire models

In all cases can be modelled as a phase oscillator

θ̇ = ω

for θ modulo 2π when transients have decayed, where frequency

ω =
2π

T

related to the period T . Off the limit cycle, however, other dynamics are at work.
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The anatomy of an oscillator Isochrons

Isochrons

Suppose X ∈ Rd with
Ẋ = F (X )

has a stable limit cycle P(t), period T . We define the set of points with eventual
phase φ to be

Iφ = {Y ∈ Rd : |Y (t) − P(t + φ)| → ∞}

The sets Iφ are called the isocrons of the limit cycle. For a stable limit cycle:

They are manifolds of dimension d − 1.

They foliate a neighbourhood of the cycle.

They can be used to understand the behaviour of forced or coupled
oscillators.

K. Josic, E. Brown, J. Moehlis:
http://www.scholarpedia.org/article/Isochron

E Izhikevich:
http://www.izhikevich.com
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The anatomy of an oscillator Isochrons

Isocrons for a Hodgkin-Huxley neuron
(http://www.scholarpedia.org/article/Isochron)
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The anatomy of an oscillator Phase response curves

Phase response curves

The phase response curve is a way of measuring the response to sudden change in
one variable; if we consider a vector perturbation Z ∈ Rd then

PRC (θ) = {φ : Iφ contains P(θ) + Z}.

Equivalently, starting at P(θ) we impulsively change to

X (0) = P(θ) + Z

and allow the system to evolve forwards in time. We choose PRC so that

|X (t) − P(t + PRC (θ))| → 0

as t → ∞.

Peter Ashwin (University of Exeter) Modelling coupled oscillators 22nd March 2009 14 / 36



The anatomy of an oscillator Phase response curves

The phase response curve models the change in phase exactly, even for large
perturbations if a long enough settling time between perturbations is allowed.

Can apply to continuous perturbations using various equivalent approaches to
obtain the infinitesimal phase response curve.

Suppose that
Ẋ = F (X ) + ǫG (t)

where G (t) represents forcing and F has an attracting limit cycle P(t).

Assume that unperturbed oscillator P(t) has period 2π.
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The anatomy of an oscillator Phase response curves

Kuramoto’s approach: We define phase Θ(X ) of all points X ∈ Rd by using the
isochrons Iφ:

φ = Θ(X ) ⇔ X ∈ Iφ.

Note that for the system with ǫ = 0 we have

d

dt
[Θ(X (t))] = ∇Θ ·

dX

dt
= ∇Θ.F (X )

But φ̇ = 1 so
∇Θ · F (X ) = 1.

Hence for the case ǫ 6= 0 we have

dφ

dt
= 1 + ǫ∇Θ · G (t).
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The anatomy of an oscillator Phase response curves

Adjoint approach (Malkin): Note that if the unperturbed oscillators is linearly
stable, then the perturbed equation is to first order in ǫ given by

θ̇ = 1 + ǫQ(θ) · G (t)

where Q(t) is the solution to the adjoint variational equation

Q̇ = −{DF (P(t))}T Q, such that Q(0) · F (P(0)) = 1.

Note that

d

dt
(Q · F ) = Q̇ · F + Q · Ḟ

= −(DF )TQ · F + Q · (DF )F = 0.

Hence the solutions of the AVE satisfy

Q(t) · F (P(t)) = 1

for all t.
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Coupled phase dynamics

Coupled phase dynamics

Consider two symmetrically coupled oscillators

dX1

dt
= F (X1) + ǫG1(X2,X1)

dX2

dt
= F (X2) + ǫG2(X1,X2)

for ǫ small (weak coupling).
In terms of phases we have approximately

dθ1
dt

= 1 + ǫQ(θ1) · G1(P(θ2),P(θ1))

dθ2
dt

= 1 + ǫQ(θ2) · G2(P(θ1),P(θ2)).
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Coupled phase dynamics

Because the phase difference evolves on a slower timescale that the phases, we get
an interaction function that expresses the effect of X2 on X1 that can be written

H1(θ) =
1

T

∫ T

0

Q(t)G1(X0(t + θ),X0(t)) dt

where Q is the solution of the adjoint variational equation.
Method of averaging allows us to write previous equation (to O(ǫ2)) as

θ′1 = 1 + ǫH1(θ2 − θ1)

θ′2 = 1 + ǫH2(θ1 − θ2).
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Coupled phase dynamics

For two identically coupled oscillators we set φ = θ2 − θ1 and obtain

φ̇ = −ǫ(H1(φ) − H2(−φ)) = ǫg(φ)

Similarly, starting at a set of N weakly coupled identical phase oscillators
θ1, · · · , θN , we can reduce to a set of N − 1 phase differences

φi = θi − θN

and can obtain
φ̇i = ǫgi (φ1, · · · , φN−1)

with evolution on a slow timescale.
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Coupled phase dynamics

Example of g(θ) for various coupling functions. (d) are for gap junction-coupled
Morris-Lecar Neurons (from T.-W. Ko and G.B. Ermentrout, arXiv:0809.3371v1
2008)
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Coupled phase dynamics Synchrony and coupling

Synchrony and coupling

Now consider N coupled oscillators reduced to phases:

θ̇i = ω + G (θ1 − θi , · · · , θN − θi ).

Simple model with “additive coupling” is

θ̇i = ω +
∑
j 6=i

Kijg(θi − θj)

with Kij coupling strengths; Kij = K for global (mean field) coupling.
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Coupled phase dynamics Synchrony and coupling

Simple choices for phase response curve g(φ):

Kuramoto
g(φ) = − sin(φ)

Kuramoto-Sakaguchi
g(φ) = − sin(φ+ α)

Hansel-Mato-Meunier

g(φ) = − sin(φ+ α) + r sin(2φ)

More general: Daido et al:

g(φ) =
∑

n

(an cos nφ+ bn sin nφ)
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Coupled phase dynamics Cluster switching/ slow oscillations

Cluster switching/ slow oscillations

Can find open regions in parameter space (for all N ≥ 4) where the only attractors
consist of robust heteroclinic networks made up of:

Periodic orbits with nontrivial clustering.

Unstable manifolds of these periodic orbits.

Winnerless competition between cluster states (Afraimovich, Huerta, Laurent,
Nowotny, Rabinovich et al)

Slow oscillations/switching dynamics (Hansel et al, Kori and Kuramoto)
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Coupled phase dynamics Cluster switching/ slow oscillations

Invariant subspaces where

Trajectory of system

there is phase clustering

periodic orbits
Saddle

Peter Ashwin (University of Exeter) Modelling coupled oscillators 22nd March 2009 25 / 36



Coupled phase dynamics Cluster switching/ slow oscillations

Example of transient clustering dynamics:
N = 5, α = 1.8, r = 0.2, β = −2

g(φ) = − sin(φ+ α) + r sin(2φ+ β)

0 50 100 150 200 250 300 350

1

2

3

4

5

t

[P. A., G. Orosz, J. Wordsworth, S. Townley. Reliable switching between cluster
states for globally coupled phase oscillators, SIAM J Applied Dynamical Systems
6:728-758 (2007)]
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Coupled phase dynamics Cluster switching/ slow oscillations
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Coupled phase dynamics Cluster switching/ slow oscillations

One can apply this to conductance-based models to find similar dynamics in the
presence of synaptic coupling with delays [Karabacak and A, 2009].
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Coupled phase dynamics Stable clustering

Stable clustering

θ̇i = ω +
1

N

N∑
j=1

g(θi − θj) , (1)

Consider M clusters where 1 ≤ M ≤ N. Corresponding M-cluster partition
A = {A1, . . . ,AM} of {1, . . . ,N} such that

{1, . . . ,N} =

M⋃
p=1

Ap , (2)

where Ap are pairwise disjoint sets (Ap ∩ Aq = ∅ if p 6= q). NB if ap = |Ap| then

M∑
p=1

ap = N . (3)
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Coupled phase dynamics Stable clustering

For partition A associate a subspace

TN
A = {θ ∈ TN : θi = θj ⇔ there is a p such that i , j ⊂ Ap} , (4)

and we say a given θ ∈ TN
A realizes the partition A.

Denote phase of the p-th cluster by ψp := θi = θj = θk = . . . for
{i , j , k, . . .} ⊂ Ap we obtain

ψ̇p = ω +
1

N

M∑
q=1

aq g(ψp − ψq) (5)

for p = 1, . . . ,M.
We say θ ∈ TN

A realizes the partition A as a periodic orbit if

ψp = Ω t + φp (6)

for p = 1, . . . ,M and all φp (mod 2π) are different.
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Coupled phase dynamics Stable clustering

Substituting (6) into (5) gives

Ω = ω +
1

N

M∑
q=1

aq g(φp − φq) (7)

for p = 1, . . . ,M. By subtracting the last equation (p = M) from each of the
preceding equations (p = 1, . . . ,M − 1) we obtain

0 =
M∑

q=1

aq (g(φp − φq) − g(φM − φq)) (8)

for p = 1, . . . ,M − 1. Can determine M − 1 phases out of φp, p = 1, . . . ,M while
one phase can be chosen arbitrarily, and (7) determines the frequency Ω.
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Coupled phase dynamics Stable clustering

Can compute linear stability in a similar way to above and show [Orosz, A. 2009]:

Theorem

There is a coupling function g for the system (1) such that for any N and any
given M-cluster partition A of {1, . . . ,N} there is a linearly stable periodic orbit
realizing that partition (and all permutations of it). Moreover, all nearby g in the
C 2 norm have a stable periodic orbit with the same partition.
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Comments and limitations Comments

Comments and limitations

In summary, there are practical and numerical ways of reducing and understanding
the dynamics of coupled limit cycle oscillators of general type to coupled phase
oscillators. This can be useful because:

Reduces dimension of phase space

Gives framework for understanding effects of coupling (e.g. pattern
formation) on oscillators

For identical oscillators, can reduce limit cycle problems to equilibrium
problems

Phase dynamics can be highly nontrivial even for quite simple coupling
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Comments and limitations Comments

Tools include:

Numerical simulation/solution continuation.

Isochrons/phase response curves/phase transition curves

Averaging method

Use of adjoint variational equation

Analysis of coupled ODEs on a torus

Studying the synchronization properties

Symmetric dynamics and bifurcation theory
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Comments and limitations Limitations

Limitations

The method of reduction to phase oscillators works well for sufficiently weak
couplng, but needs to be treated with respect for:

Strong coupling

Weakly attracting/neutrally stable limit cycles

Chaotic “oscillators”

Non-smooth systems

Be careful when averaging in multi-frequency systems
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Comments and limitations Limitations
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