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Single neuron models

Lecture summary: Two types of complexity are usually associated with modelling single neurons:
the intrinsic properties of the cell membrane that make neuronal dynamics so rich, and the
elaborate morphology that allows neurons to receive and integrate thousands of synaptic inputs
from other cells. Models that describe the membrane potential of a neuron by a single variable
and ignore its spatial variation are called single-compartment models. In this sub-class of models
the rich and complex dynamics of real neurons can be reproduced quite accurately by models that
include aspects of ionic conductances, known as conductance-based models. To study the effects
of dendritic or axonal morphologies on neuronal function, models based on the linear cable theory
and multi-compartmental models have to be considered instead. In this lecture, I will review
the spatially extended models of neurons by introducing the cable equation and the Rall model
of an equivalent cylinder that can be studied analytically. Multi-compartmental conductance-
based models that incorporate the complexity of real membrane dynamics but lack mathematical
tractability will also be discussed.

The neuron: biological background

The fundamental processing unit of the central nervous system is the neuron. The total number
of neurons in the human brain is around 1012. In 1mm3 of cortical tissue there are about 105

neurons.
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• Three main structures can be identified in a typical neuron: dendritic tree, cell body or
soma, and axon. These roughly correspond to the input, processing and output functions
respectively. The dendritic tree is a branched structure that forms the main input pathway
of a neuron. It sums the output signals received from surrounding neurons in the form of
an electrical potential, which diffuses along the tree to the soma. If the total potential at
the soma exceeds a certain threshold value, the neuron produces a short electrical spike or
action potential, which is then conducted along the axon. The axon itself branches out so
that the pulse is transmitted to several thousand target neurons.

• The contacts of the axon to target neurons are either located on the dendritic tree or directly
on the soma, and are known as synapses. Most synapses are chemical contacts, that is,
the arrival of an action potential at the synapse induces the secretion of a neurotransmitter
that in turn leads to a change in the potential of the membrane of the target neuron.
Depending on the type of synapse, an incoming pulse either causes an increase in electrical
potential (excitatory synapse) or a decrease (inhibitory synapse).

• The total input to a neuron is continuous-valued (the resulting electrical potential at the
soma), whereas the output is discrete (either it fires a pulse or it does not).

• A single neuron may have thousands, tens of thousands or hundreds of thousands of
synapses. However, the brain as a whole is sparsely connected since a neuron will only
be connected directly to a tiny fraction of other neurons.

• Inputs received by a neuron produce electrical transmembrane currents that change the
membrane potential of the neuron. Voltage-sensitive channels embedded in the neuronal
membrane can lead to the generation of an action potential (or spike). An action potential
lasts about 1msec. Synaptic transmission can last from a few to a few hundred msec.
Changes in synaptic potential induced by the arrival of an action potential can last from
1msec to many minutes.

Ionic gates are embedded in the cell membrane and control the passage of ions.

The neuron membrane acts as a boundary separating the intracellular fluid from the extracellular
fluid. It is selectively permeable allowing, for example, the passage of water but not large macro-
molecules. Ions (such as sodium (Na+), potassium (K+) and chloride (Cl−)) can pass through the
cell membrane, driven by diffusion and electrical forces, and this movement of ions underlies the
generation and propagation of signals along neurons. Differences in the ionic concentrations of
the intra/extracellular fluids create a potential difference across the cell. If the intra/extracellular
potentials are denoted by Vout and Vin respectively, then the membrane potential is the potential
difference across the membrane V = Vin − Vout.
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• In the absence of a signal, there is a resting potential of ∼ −65mV.

• During an action potential, the membrane potential increase rapidly to ∼ 20mV, returns
slowly to ∼ −75mV and then slowly relaxes to the resting potential.

• The rapid membrane depolarisation corresponds to an influx of Na+ across the membrane.
The return to −75mV corresponds to the transfer of K+ out of the cell. The final recovery
stage back to the resting potential is associated with the passage of Cl− out of the cell.

Neurons are charged due to an unequal distribution of ions across the cell membrane. The
membrane of a neuron is said to be excitable and will support an action potential (right) in
response to a sufficiently large input. For an animation of channel gating during an action
potential see http://www.blackwellpublishing.com/matthews/channel.html

An example of the experimental setup in vitro:

The current injected into the cell (the stimulus) and the corresponding voltage response are
shown. If the stimulus is sufficient to push the membrane potential past the firing threshold for
the neuron (such as the second stimulus), an action potential is generated.
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Single-compartment models

The Nernst potential

The electrical behaviour of cells is based upon the transfer and storage of charge. Biological
fluids (such as cytoplasm and extracellular fluid) contain numerous ions. Consider the case where
the two ions K+ and any anion (a negatively charged ion) A− are present across the membrane:

∆V>0 mV∆V=0 mV∆V=0 mV

Left: Concentration and charge are balanced on each side of the membrane, so there is no
potential difference across the membrane, ∆V = 0. Middle: Due to a nonselective pore, charge
and concentration are balanced everywhere, and so there is no ∆V across the membrane. Right:
K+ selective pore allows K+ but not A− to pass through the membrane. K+ moves to
equilibrate concentration until counterbalanced by the accumulating negative charge, because
A− cannot move resulting in ∆V 6= 0.

Ion specific pores create voltage differences.

Diffusion of K+ ions down the concentration gradient through the membrane (a) creates an
electric potential force directed at the opposite direction (b) until the diffusion and electrical
forces counter each other (c) resulting in the Nernst equilibrium potential for K+.

Balancing the electrical and osmotic forces gives the Nernst potential for each ionic species:

∆V ∝ log
[ion] out

[ion]in
.

The Nernst potential represents the equilibrium of the thermodynamic system and the tendency
for the system to move toward the equilibrium potential is the basis of the ionic battery used in
the modelling of electrophysiological phenomena. In electrophysiology, the equilibrium potential
is called the reversal potential.
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The flow of Na+ and Ca2+ ions is not significant, at least at rest, but the flow of K+ and Cl−

ions is. This, however, does not eliminate the concentration asymmetry for two reasons:

• Passive redistribution. The impermeable A− attract more K+ into the cell and repel more
Cl− out of the cell (thereby creating concentration gradients).

• Active transport. Ions are pumped in and out of the cell via ionic pumps. For example,
the Na+-K+ pump pumps out three Na+ ions for every two K+ ions pumped in (thereby
maintaining concentration gradients).

Ion concentrations in a typical mammalian neuron.

The conductance-based membrane model

Our task in modelling electrophysiological phenomena is to describe how the conductance of the
membrane to various ions changes with time and then to keep track of the changes in current
and voltage that result.

Ohm’s law: the current flows down a voltage gradient in proportion to the resistance in the circuit

I =
V

R
= gV

g is conductance (=1/resistance)

The conceptual idea behind current electrophysiological models is that cell membranes behave like
electrical circuits. The basic circuit elements are 1) the phospholipid bilayer, which is analogous
to a capacitor in that it accumulates ionic charge as the electrical potential across the membrane
changes; 2) the ionic permeabilities of the membrane, which are analogous to resistors in an
electronic circuit; and 3) the electrochemical driving forces, which are analogous to batteries
driving the ionic currents. These ionic currents are arranged in a parallel circuit (see the diagram
of the electrical circuit). Thus the electrical behavior of cells is based upon the transfer and
storage of ions such as K+ and Na+.

The capacitance is due to the phospholipid bilayer separating the ions on the inside and the
outside of the cell. The three ionic currents, one for Na+, one for K+, and one for a non-specific
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The equivalent circuit representation of a cell membrane.

leak, are indicated by resistances. The conductances of the Na+ and K+ currents are voltage
dependent, as indicated by the variable resistances. Let VK and VNa denote the K+ and Na+

reversal potentials determined by the Nernst potential. When the membrane potential equals the
reversal potential, say VK, the K+ current, denoted as IK (µA/cm2), is zero (this is the definition
of the Nernst equilibrium potential for K+). Otherwise, the K+ current is proportional to the
difference of potentials (using Ohm’s law):

IK = gK(V − VK).

Here gK (mS/cm2) is the conductance of the K+ channel and (V − VK) is the K+ driving force
across the membrane. In a cell with many different ions the total current is the sum of the
individual ionic currents:

Iion =
∑

Ii =
∑

gi(V − Vi) = gK(V − VK) + gNa(V − VNa) + ... .

Since the membrane acts as a capacitor, the capacitive current across the membrane can be
defined as

Icap = C
dV

dt
,

where C (µF/cm2) is the capacitance of the membrane and V is the membrane potential (the
potential difference between the inside and outside of the cell). According to Kirchoff’s law,
the total current Iapp, flowing across a patch of a cell membrane is the sum of the membrane
capacitive current Icap and all the ionic currents

Iapp = C
dV

dt
+ Iion.

This leads to the ODE of the membrane model

C
dV

dt
= −
∑
i

gi(V − Vi) + Iapp
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In case of two ionic currents, IK and INa, we have

C
dV

dt
= −gK(V − VK) − gNa(V − VNa) + Iapp.

The Hodgkin-Huxley model

Channels can be thought to have gates that regulate the permeability of the pore to ions. These
gates can be controlled by membrane potential, producing voltage-gated channels; by chemical
ligands, producing ligand-gated channels; or by a combination of factors. In a series of experiments
in 1952, Alan Hodgkin and Andrew Huxley established experimentally the voltage dependence of
ion conductances in the electrically excitable membrane of the squid giant axon.

In the Hodgkin-Huxley model the membrane current arises mainly through the conduction of
sodium and potassium ions through voltage-dependent channels in the membrane. The contri-
bution from other ionic currents is included as the leak current, i.e. the ODE for V includes the
following term

−gK(V − VK) − gNa(V − VNa) − gL(V − VL),

where gK, gNa and gL are conductances of potassium, sodium and leak channels respectively.

Voltage-gated channels
The mathematical description of voltage-dependent activation and inactivation gates is based on
the mechanism

C
k+

−⇀↽−
k−
O,

and can be described by
dfO
dt

=
f∞ − fO

τ
,

where f∞ = k+/(k+ + k−) and τ = 1/(k+ + k−). However, what distinguishes a voltage-
dependent gating mechanism from a passive mechanism is the voltage dependence of the rate
constants k+ and k−. Because ionic channels are composed of proteins with charged amino acid
side chains the potential difference across the membrane can influence the rate at which the
transitions from the open to closed state occur and the rate constants are expected to have the
form

k+ = k+
0 e−αV , k− = k−

0 e−βV ,

where k+
0 and k−

0 are independent of V . Therefore,

f∞ =
1

1+ k−
0 /k

+
0 e(α−β)V

=
1

1+ e−(V−V0)/S0
,

where

V0 =
1

β− α
ln(k−

0 /k
+
0 ), S0 =

1

β− α
,

i.e. the fraction of open channels f∞ depends on the membrane voltage. Hence from the form
of f∞ we see that gates can either be activating (S0 > 0) or inactivating (S0 < 0).

Since gates can be controlled by membrane potential, the conductances, such as gK and gNa,
depend on V , i.e gK = gK(V) and gNa = gNa(V).

The great insight of Hodgkin and Huxley was to realise that gK depend upon four activation
gates:

gK = gKn
4,
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whereas gNa depends upon three activation gates and one inactivation gate:

gNa = gNam
3h.

Here the variable m for Na+ (similarly, the variable n for K+) denotes the probability of an
activation gate being in the open state and h denotes the probability of an inactivation gate
being in the open state. gK and gNa are the maximal conductances of the populations of K+ and
Na+ channels respectively. The factors n4 and m3h model the average proportions of channels
in the open states for potassium and sodium. The gating variables have to satisfy the following
equations

dm

dt
=
m∞(V) −m

τm(V)
,

dn

dt
=
n∞(V) − n

τn(V)
,

dh

dt
=
h∞(V) − h

τh(V)
.

The six functions τX(V) and X∞(V), X ∈ {m,n, h}, are obtained from fits with experimental
data. It is common practice to write

τX(V) =
1

αX(V) + βX(V)
, X∞(V) = αX(V)τX(V).

The details of the final Hodgkin-Huxley description of nerve tissue are completed with:

αm(V) =
0.1(V + 40)

1− exp[−0.1(V + 40)]
αh(V) = 0.07 exp[−0.05(V + 65)]

αn(V) =
0.01(V + 55)

1− exp[−0.1(V + 55)]
βm(V) = 4.0 exp[−0.0556(V + 65)]

βh(V) =
1

1+ exp[−0.1(V + 35)]
βn(V) = 0.125 exp[−0.0125(V + 65)]

The primary equations for the Hodgkin-Huxley model:
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C
dV

dt
= −gNam

3h(V − VNa) − gKn
4(V − VK) − gL(V − VL) + Iapp,

dm

dt
=
m∞ −m

τm
,

dh

dt
=
h∞ − h

τh
,

dn

dt
=
n∞ − n

τn

C = 1 µF/cm2, gL = 0.3 mS/ cm2, gK = 36 mS/cm2, gNa = 120 mS/cm2, VL = −54.402 mV,
VK = −77 mV and VNa = 50 mV. (All potentials are measured in mV, all times in ms and all
currents in µA/cm2).

Left: The solution of the HH equations with Iapp = 0 and three different initial conditions
V(0) = −65, V(0) = −60 and V(0) = −57 mV. When the initial value exceeds ≈ −59 mV, an
action potential is produced. Right: Continuous spiking occurs under the same conditions with
an applied current Iapp = 15.

Spatially extended models

Linear cable theory

Cable theory was originally applied to the conduction of potentials in an axon by Hodgkin and
Rushton (1946) and was later applied to the dendritic trees of neurons by Wilfrid Rall (1962). The
theory itself is much older and was first developed for analyzing underwater telegraph transmission
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cables. The general problem addressed by cable theory is how potentials spread in a dendritic
tree. A typical neuron has thousands of synaptic inputs spread across its surfaces. Cable theory
is concerned with how these inputs propagate to the soma or the axon initial segment, how these
inputs interact with one another, and how the placement of an input on a dendritic tree affects
its functional importance to the neuron.

Dendritic and axonal cables are typically narrow enough that variations of the potential in the
radial or axial directions are negligible compared to longitudinal variations. Therefore, the mem-
brane potential along a neuronal cable is expressed as a function of a single longitudinal spatial
coordinate x and time, V(x, t). The dendritic or axonal cable can be visualised as a cylindrical
membrane surrounding an intracellular fluid phase of constant cross-sectional area.

The electrical equivalent circuit of the cable model.

The relation between intracellular axial current Ia(x) and the intracellular voltage Vi is given by
Ohm’s law

Vi(x) − Vi(x+ ∆x) = Ia(x)ra∆x.

After rearranging and taking the limit ∆x→ 0 we have

lim
∆x→0

Vi(x+ ∆x) − Vi(x)

∆x
=
∂Vi

∂x
= −raIa(x). (1)

We assume that the fibre is immersed in a large volume of extracellular fluid. The extracellular
resistance may than be neglected and the transmembrane voltage V may be identified with Vi,
since the extracellular potential Ve will be constant and is conveniently assumed to be zero.

The axial current may change either as a result of current crossing the cell membrane or as a
result of current applied through an internal electrode. Hence at all points apart from those at
which current is applied from an electrode, the rate of change in Ia with distance along the cable
must be equal and opposite to the density of the membrane current Im

∂Ia

∂x
= −Im. (2)

We may combine (1) and (2) by differentiating equation (1) to give

∂2V

∂x2
= −ra

∂Ia

∂x
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and, thus,
1

ra

∂2V

∂x2
= Im. (3)

The equation for the membrane current has the form

Im = cm
∂V

∂t
+
V

rm
. (4)

Combining (3) and (4) we obtain the basic differential equation of cable theory

1

ra

∂2V

∂x2
= cm

∂V

∂t
+
V

rm

Here cm and rm are the capacity and resistance, respectively, of the membrane enclosed by a unit
length of cable. The constants rm, cm, and ra are related to Rm, Cm, and Ra by the equations

rm =
Rm

πa
,

cm = πaCm,

ra =
4Ra

πa2
,

where Rm is the specific membrane resistance, Cm is the specific membrane capacity, Ra is the
specific cytoplasmic resistivity, and a is the cable diameter. The linear cable theory assumes that
rm, cm, and ra are independent of V , x, and t. Introducing the space constant λ =

√
rm/ra

and the membrane time constant τ = rmcm the cable equation may also be written as

τ
∂V

∂t
= λ2

∂2V

∂x2
− V.

The independent variables can be redefined in terms of the dimensionless quantities,

X = x/λ and T = t/τ.

The linear cable equation then becomes

∂V

∂T
=
∂2V

∂X2
− V

Let V(s) be the Laplace transform of V(T). Then assuming V(X, 0) = 0 the last equation
transforms to

d2V

dX2
− (s+ 1)V = 0.

The general solution to this equation is

V = A exp{−X
√
s+ 1} + B exp{X

√
s+ 1},

where A and B are constants or functions of s. In order to obtain particular solutions, A and B
must be determined from the boundary conditions for each case.

Response of infinite cable to a constant current I0 at X = 0

V(X, T) =
I0

4

[
exp(−X)erfc

(
X

2
√
T

−
√
T

)
− exp(X)erfc

(
X

2
√
T

+
√
T

)]
(5)

When T → 0, erfc(T)→ 0, erfc(−T)→ 2 and equation (5) becomes

V =
I0

2
exp
(
−
x

λ

)
.
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The Green’s function method

Consider the following cable equation

Vt = DVxx −
V

τ
+ I, 0 < x < L, t > 0, (6)

where D = λ2/τ is the diffusion coefficient and I(x, t) is the input current. To solve (6) we
will need boundary conditions at the endpoints. We also need to specify the initial value of the
depolarisation

V(x, 0) = v0(x), 0 ≤ x ≤ L.

The Green’s function G(x, y, t) for equation (6) with some boundary conditions is the solution
of

Gt = DGxx −
G

τ
+ δ(x− y)δ(t), 0 < x < L, 0 < y < L,

which satisfies the same boundary conditions and G = 0 for t < 0. Thus G is the depolarization
that results when a unit charge is delivered instantaneously at t = 0 at the point y.

Once G(x, y, t) is known the depolarization V(x, t) may be found from the following formula for
any suitable current density I(x, t),

V(x, t) =

∫L
0

G(x, y, t)v0(y)dy+

∫L
0

∫ t
0

G(x, y, t− s)I(y, s)dsdy.

The proof can be found in [1].

The Green’s function on (−∞,∞)

The Green’s function G∞(x, y, t) for the cable equation on the interval (−∞,∞) with boundary
conditions lim|x|→∞G∞(x, y, t) = 0 takes the form

G∞(x, y, t) =
exp(−t/τ) exp(−(x− y)2/(4Dt))√

4πDt
, t > 0.
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